Machine Learning-Based Path Loss Modeling with Simplified Features
- URL: http://arxiv.org/abs/2405.10006v1
- Date: Thu, 16 May 2024 11:46:39 GMT
- Title: Machine Learning-Based Path Loss Modeling with Simplified Features
- Authors: Jonathan Ethier, Mathieu Chateauvert,
- Abstract summary: Obstacle depth offers a streamlined, yet surprisingly accurate, method for predicting wireless signal propagation.
We propose a novel approach that uses environmental information for predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Propagation modeling is a crucial tool for successful wireless deployments and spectrum planning with the demand for high modeling accuracy continuing to grow. Recognizing that detailed knowledge of the physical environment (terrain and clutter) is essential, we propose a novel approach that uses environmental information for predictions. Instead of relying on complex, detail-intensive models, we explore the use of simplified scalar features involving the total obstruction depth along the direct path from transmitter to receiver. Obstacle depth offers a streamlined, yet surprisingly accurate, method for predicting wireless signal propagation, providing a practical solution for efficient and effective wireless network planning.
Related papers
- Physics-Informed Generative Modeling of Wireless Channels [7.394776649238597]
We propose a model that combines the physics-related compressibility of wireless channels with sparse Bayesian generative modeling (SBGM)
Our method can learn from compressed observations received by an access point (AP) during default online operation.
It is physically interpretable and generalizes to arbitrary system configurations without requiring retraining.
arXiv Detail & Related papers (2025-02-14T13:05:48Z) - Path Loss Prediction Using Machine Learning with Extended Features [0.0]
Wireless communications rely on path loss modeling, which is most effective when it includes the physical details of the propagation environment.
Access to such details enables propagation models to more accurately predict coverage and minimize interference in wireless deployments.
We introduce an extended set of features that improves prediction accuracy while, most importantly, maintaining model generalization across a broad range of environments.
arXiv Detail & Related papers (2025-01-14T18:44:35Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
We propose a new approach for informative path planning based on deep reinforcement learning (RL)
Our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions.
By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources.
arXiv Detail & Related papers (2021-09-28T09:00:55Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
We propose a purposeful and interpretable detail-fidelity attention network to progressively process smoothes and details in divide-and-conquer manner.
Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference.
Experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T08:31:23Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.