論文の概要: ENADPool: The Edge-Node Attention-based Differentiable Pooling for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.10218v1
- Date: Thu, 16 May 2024 16:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 13:43:00.199789
- Title: ENADPool: The Edge-Node Attention-based Differentiable Pooling for Graph Neural Networks
- Title(参考訳): ENADPool: グラフニューラルネットワークのためのエッジノード注意に基づく微分プール
- Authors: Zhehan Zhao, Lu Bai, Lixin Cui, Ming Li, Yue Wang, Lixiang Xu, Edwin R. Hancock,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ分類のための強力なツールである。
GNNにとって重要な操作の1つは、ノード表現から効果的な埋め込みを学習できるダウンサンプリングまたはプールである。
We propose a new Hierarchical pooling operation、すなわち Edge-Node Attention-based Differentiable Pooling (ENADPool)を提案する。
- 参考スコア(独自算出の注目度): 19.889547537748395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are powerful tools for graph classification. One important operation for GNNs is the downsampling or pooling that can learn effective embeddings from the node representations. In this paper, we propose a new hierarchical pooling operation, namely the Edge-Node Attention-based Differentiable Pooling (ENADPool), for GNNs to learn effective graph representations. Unlike the classical hierarchical pooling operation that is based on the unclear node assignment and simply computes the averaged feature over the nodes of each cluster, the proposed ENADPool not only employs a hard clustering strategy to assign each node into an unique cluster, but also compress the node features as well as their edge connectivity strengths into the resulting hierarchical structure based on the attention mechanism after each pooling step. As a result, the proposed ENADPool simultaneously identifies the importance of different nodes within each separated cluster and edges between corresponding clusters, that significantly addresses the shortcomings of the uniform edge-node based structure information aggregation arising in the classical hierarchical pooling operation. Moreover, to mitigate the over-smoothing problem arising in existing GNNs, we propose a Multi-distance GNN (MD-GNN) model associated with the proposed ENADPool operation, allowing the nodes to actively and directly receive the feature information from neighbors at different random walk steps. Experiments demonstrate the effectiveness of the MD-GNN associated with the proposed ENADPool.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ分類のための強力なツールである。
GNNにとって重要な操作の1つは、ノード表現から効果的な埋め込みを学習できるダウンサンプリングまたはプールである。
本稿では,グラフ表現を効果的に学習するための階層型プール,すなわちエッジノード注意に基づく微分プール(ENADPool)を提案する。
従来の階層型プール操作とは違い,提案したENADPoolでは,各ノードを単一クラスタに割り当てるハードクラスタ化戦略を採用するだけでなく,ノードの特徴やエッジ接続強度を,各プールステップ後のアテンション機構に基づく階層構造に圧縮する。
その結果,従来の階層型プール操作で発生する一様エッジノード構造情報収集の欠点に対処するため,分離クラスタ内の異なるノードと対応するクラスタ間のエッジを同時に同定した。
さらに,既存のGNNが抱える過度な問題を軽減するために,提案したENADPool操作に付随するマルチディスタンスGNN(MD-GNN)モデルを提案する。
提案したENADPoolに関連するMD-GNNの有効性を示す実験を行った。
関連論文リスト
- Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
本稿では,グラフの高密度領域からエッジを抽出する新鮮で柔軟なトラスグラフスペーシフィケーションモデルを提案する。
次に、GIN、SAGPool、GMT、DiffPool、MinCutPool、HGP-SL、DMonPool、AdamGNNといった最先端のベースラインGNNとプールモデルでスパーシフィケーションモデルを利用する。
論文 参考訳(メタデータ) (2024-07-16T17:21:36Z) - Edge-aware Hard Clustering Graph Pooling for Brain Imaging [8.425787611090776]
本稿では,エッジ対応のハードクラスタリンググラフプール(EHCPool)を提案する。
EHCPoolは、データ駆動の観点から異なるタイプの機能不全脳ネットワークを探索する可能性がある。
論文 参考訳(メタデータ) (2023-08-23T04:29:40Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
本稿では,ネットワーク埋め込みに適したGNNアーキテクチャであるCulaborative graph Neural Networks-CONNを提案する。
論文 参考訳(メタデータ) (2023-07-22T04:52:27Z) - Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Neural Networks [46.14626839260314]
現在のグラフニューラルネットワーク(GNN)は、特定のデータセットで学習するすべてのGNNモデルに根ざした問題要因である可能性が示されている。
集約操作をそれらの双対、すなわち、ノードをより明確にし、アイデンティティを保存する多様化演算子で拡張する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での大幅な性能向上について検討した。
論文 参考訳(メタデータ) (2022-12-21T07:24:03Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
グラフニューラルネットワークは、多数のグラフ分類タスクにおいて最先端のパフォーマンスを達成する。
HoscPoolはクラスタリングベースのグラフプーリング演算子で、階層的に高階情報をキャプチャする。
グラフ分類タスクにおいてHoscPoolを評価し,そのクラスタリングコンポーネントを地層構造を持つグラフ上で評価する。
論文 参考訳(メタデータ) (2022-09-02T09:17:10Z) - Graph Ordering Attention Networks [22.468776559433614]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題でうまく使われている。
近隣ノード間のインタラクションをキャプチャする新しいGNNコンポーネントであるグラフ順序付け注意層(GOAT)を導入する。
GOATレイヤは、複雑な情報をキャプチャするグラフメトリクスのモデリングにおけるパフォーマンスの向上を示す。
論文 参考訳(メタデータ) (2022-04-11T18:13:19Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - NCGNN: Node-level Capsule Graph Neural Network [45.23653314235767]
ノードレベルカプセルグラフニューラルネットワーク(ncgnn)は、ノードをカプセル群として表現する。
凝集に適したカプセルを適応的に選択する新しい動的ルーティング手法を開発した。
NCGNNは、過度にスムースな問題に対処でき、分類のためのより良いノード埋め込みを生成することで、芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-12-07T06:46:17Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。