論文の概要: Co-Matching: Towards Human-Machine Collaborative Legal Case Matching
- arxiv url: http://arxiv.org/abs/2405.10248v1
- Date: Thu, 16 May 2024 16:50:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:30:32.825408
- Title: Co-Matching: Towards Human-Machine Collaborative Legal Case Matching
- Title(参考訳): 共同マッチング:人間と機械の協調的法的事例マッチングを目指して
- Authors: Chen Huang, Xinwei Yang, Yang Deng, Wenqiang Lei, JianCheng Lv, Tat-Seng Chua,
- Abstract要約: 合法的なケースマッチングが成功するには、法的実践者の暗黙の知識が必要であり、機械に言語化してエンコードすることは困難である。
本稿では,協調マッチングフレームワークであるCo-Matchingを提案する。
本研究は,人間と機械の協調作業における先駆的な取り組みであり,今後の協調マッチング研究のマイルストーンとなる。
- 参考スコア(独自算出の注目度): 69.21196368715144
- License:
- Abstract: Recent efforts have aimed to improve AI machines in legal case matching by integrating legal domain knowledge. However, successful legal case matching requires the tacit knowledge of legal practitioners, which is difficult to verbalize and encode into machines. This emphasizes the crucial role of involving legal practitioners in high-stakes legal case matching. To address this, we propose a collaborative matching framework called Co-Matching, which encourages both the machine and the legal practitioner to participate in the matching process, integrating tacit knowledge. Unlike existing methods that rely solely on the machine, Co-Matching allows both the legal practitioner and the machine to determine key sentences and then combine them probabilistically. Co-Matching introduces a method called ProtoEM to estimate human decision uncertainty, facilitating the probabilistic combination. Experimental results demonstrate that Co-Matching consistently outperforms existing legal case matching methods, delivering significant performance improvements over human- and machine-based matching in isolation (on average, +5.51% and +8.71%, respectively). Further analysis shows that Co-Matching also ensures better human-machine collaboration effectiveness. Our study represents a pioneering effort in human-machine collaboration for the matching task, marking a milestone for future collaborative matching studies.
- Abstract(参考訳): 近年の取り組みは、法的なドメイン知識を統合することで、訴訟マッチングにおけるAIマシンの改善を目指している。
しかし、成功した判例マッチングは、法的実践者の暗黙の知識を必要とするため、機械に言語化してエンコードすることは困難である。
これは、法律実務者が高額の判例マッチングに関与する重要な役割を強調している。
そこで本研究では,協調マッチングフレームワークであるCo-Matchingを提案する。このフレームワークは,機械と法的実践者の両方がマッチングプロセスに参加することを奨励し,暗黙の知識を統合する。
機械にのみ依存する既存の方法とは異なり、Co-Matchingでは、法律実務者と機械の両方が鍵文を決定し、確率的にそれらを組み合わせることができる。
Co-MatchingはProtoEMと呼ばれる手法を導入し、人間の意思決定の不確実性を推定し、確率的組み合わせを促進する。
実験の結果、Co-Matchingは既存の判例マッチング法を一貫して上回り、人間と機械によるマッチングを分離して(平均では+5.51%、+8.71%)大幅な性能向上を実現している。
さらなる分析により、コマッチは人間と機械の協調効果も向上することが示された。
本研究は,人間と機械の協調作業における先駆的な取り組みであり,今後の協調マッチング研究のマイルストーンとなる。
関連論文リスト
- Similar Phrases for Cause of Actions of Civil Cases [0.5949789346585451]
この研究は、ディース係数やピアソンの相関係数など、様々な類似度尺度を実装している。
アンサンブルモデルはランキングを組み合わせ、ソーシャルネットワーク分析は関連するCOAのクラスタを特定する。
論文 参考訳(メタデータ) (2024-10-11T06:43:45Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
コントラディション検索(Contradiction Search)とは、クエリの内容に明示的に異を唱える文書を識別し、抽出することである。
類似性探索やクロスエンコーダモデルといった既存の手法には、大きな制限がある。
文間の微妙で矛盾したニュアンスを保存するために特別に訓練された文埋め込みを利用するSparseCLを導入する。
論文 参考訳(メタデータ) (2024-06-15T21:57:03Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination [36.33334853998621]
協調的オープンエンド・ラーニング(COLE)フレームワークを導入し,学習における協調的非互換性を解決する。
COLEは、グラフ理論の観点を用いて、2人のプレイヤーと協調ゲームにおけるオープンエンド目標を定式化し、各戦略の協調能力を評価し、特定する。
我々は,COLEが理論的および経験的分析から協調的不整合性を効果的に克服できることを示した。
論文 参考訳(メタデータ) (2023-06-05T16:51:38Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchoptは、機械学習で最適化ベンチマークを自動化、再生、公開するためのフレームワークである。
Benchoptは実験を実行、共有、拡張するための既製のツールを提供することで、コミュニティのベンチマークを簡単にする。
論文 参考訳(メタデータ) (2022-06-27T16:19:24Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
われわれは10年以上前に行われた法律分野における、注目に値する、未調査のAI設計プロセスについて検討する。
インタラクティブなシミュレーション手法によって,コンピュータ科学者と弁護士が共同設計者になれることを示す。
論文 参考訳(メタデータ) (2022-03-08T15:46:52Z) - Normative Disagreement as a Challenge for Cooperative AI [56.34005280792013]
典型的な協調誘導学習アルゴリズムは、問題の解決に協力することができないと論じる。
我々は,ノルム適応政策のクラスを開発し,これらが協調性を著しく向上させることを示す実験を行った。
論文 参考訳(メタデータ) (2021-11-27T11:37:42Z) - Partner-Aware Algorithms in Decentralized Cooperative Bandit Teams [14.215359943041369]
我々は、より一般的なマルチエージェントコラボレーションの抽象化として、複合報酬を用いた分散マルチエージェント帯域(MAB)問題を提案し、解析する。
本稿では,よく知られた単一エージェント・アッパー信頼境界アルゴリズムを拡張した逐次意思決定のためのパートナー・アウェア戦略を提案する。
提案したパートナー意識戦略は、他の既知の手法よりも優れており、人間による研究は、パートナー意識戦略を実装するAIエージェントと協力することを好むことを示唆している。
論文 参考訳(メタデータ) (2021-10-02T08:17:30Z) - Balancing Rational and Other-Regarding Preferences in
Cooperative-Competitive Environments [4.705291741591329]
混合環境は利己的で社会的利益の衝突で悪名高い。
個人と社会的インセンティブのバランスをとるBAROCCOを提案します。
メタアルゴリズムは、Qラーニングとアクタークリティカルの両方のフレームワークと互換性があります。
論文 参考訳(メタデータ) (2021-02-24T14:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。