論文の概要: The fast committor machine: Interpretable prediction with kernels
- arxiv url: http://arxiv.org/abs/2405.10410v2
- Date: Mon, 10 Jun 2024 17:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:54:54.068120
- Title: The fast committor machine: Interpretable prediction with kernels
- Title(参考訳): 高速コミッタマシン:カーネルによる解釈可能な予測
- Authors: D. Aristoff, M. Johnson, G. Simpson, R. J. Webber,
- Abstract要約: 本稿では,高速コミッタマシン(FCM)と呼ばれる,コミッタの効率的な近似アルゴリズムを提案する。
カーネル関数は、$A$から$B$遷移を最適に記述する低次元部分空間を強調するように構成される。
FCMは精度が高く、同じ数のパラメータを持つニューラルネットワークよりも速くトレーニングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration $x$ will reach a set $B$ before a set $A$. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the "fast committor machine" (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces which optimally describe the $A$ to $B$ transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly in the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.
- Abstract(参考訳): 確率的システムの研究において、コミッタ関数は、初期設定から始まるシステムが、セット$A$の前にセット$B$に達する確率を記述する。
本稿では, 高速コミッタマシン (FCM) と呼ばれる, コミッタを近似するための効率的かつ解釈可能なアルゴリズムを提案する。
FCMは、シミュレーションされた軌跡データを使用して、コミッタのカーネルベースのモデルを構築する。
カーネル関数は、$A$から$B$遷移を最適に記述する低次元部分空間を強調するように構成される。
カーネルモデルの係数はランダム化された線形代数を用いて決定され、データポイント数で線形にスケールするランタイムとなる。
三重井戸電位とアラニンジペプチドを含む数値実験では、FCMは精度が高く、同じ数のパラメータを持つニューラルネットワークよりも速く訓練する。
FCMはニューラルネットよりも解釈可能である。
関連論文リスト
- Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods [0.0]
我々はBrownian Kernel Neural Network (BKerNN) と呼ばれる推定器の効率的な手法を提案する。
BKerNNの予測リスクは、O(min((d/n)1/2, n-1/6)$(対数因子まで)の明示的な高い確率で最小限のリスクに収束することを示す。
論文 参考訳(メタデータ) (2024-07-24T13:46:50Z) - Gradients of Functions of Large Matrices [18.361820028457718]
数値線形代数のワークホースを効率的に区別する方法を示す。
以前は知られていなかったLanczosとArnoldiのイテレーションのアジョイントシステムをJAXで実装し、結果として得られるコードがDiffraxと競合することを示す。
これらはすべて、問題固有のコードの最適化なしに実現されます。
論文 参考訳(メタデータ) (2024-05-27T15:39:45Z) - Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives [0.5735035463793009]
厳密な誤り解析を伴う非等間隔高速フーリエ変換(NFFT)に基づく手法を提案する。
また,本手法は,カーネルの分化に伴う行列の近似に適していることを示す。
複数のデータセット上で高速な行列ベクトル積を持つ付加的カーネルスキームの性能について述べる。
論文 参考訳(メタデータ) (2024-04-26T11:50:16Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
カーネルベース最適輸送(OT)推定器は、サンプルからOT問題に対処するための代替的機能的推定手順を提供する。
SSN法は, 標準正規性条件下でのグローバル収束率$O (1/sqrtk)$, 局所二次収束率を達成できることを示す。
論文 参考訳(メタデータ) (2023-10-21T18:48:45Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Neural Networks can Learn Representations with Gradient Descent [68.95262816363288]
特定の状況下では、勾配降下によって訓練されたニューラルネットワークは、カーネルメソッドのように振る舞う。
実際には、ニューラルネットワークが関連するカーネルを強く上回ることが知られている。
論文 参考訳(メタデータ) (2022-06-30T09:24:02Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
2層ReLUネットワークに必要なニューロン数を著しく削減する方法を示す。
また、事前の作業を改善するための新しい下位境界を証明し、ある仮定の下では、最善を尽くすことができることを証明します。
論文 参考訳(メタデータ) (2022-06-26T06:51:31Z) - Scalable First-Order Bayesian Optimization via Structured Automatic
Differentiation [4.061135251278187]
広い範囲のカーネルが構造化行列を生じさせ、勾配観測のための正確な$mathcalO(n2d)$Matrix-vector multiplyとヘッセン観測のための$mathcalO(n2d2)$を可能にした。
提案手法は,ほぼすべての標準カーネルに適用され,ニューラルネットワーク,放射基底関数ネットワーク,スペクトル混合カーネルなどの複雑なカーネルに自動的に拡張される。
論文 参考訳(メタデータ) (2022-06-16T17:59:48Z) - The Fast Kernel Transform [21.001203328543006]
本稿では,FKT(Fast Kernel Transform:高速カーネル変換)を提案する。
FKT はガウス、マテルン、ラショナル四次共分散関数や物理的に動機付けられたグリーン関数など、幅広い種類のカーネルに容易に適用できる。
本稿では、時間と精度のベンチマークを提供することによりFKTの有効性と汎用性を説明し、それを近隣埋め込み(t-SNE)とガウス過程を大規模実世界のデータセットに拡張する。
論文 参考訳(メタデータ) (2021-06-08T16:15:47Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。