論文の概要: Smart Expert System: Large Language Models as Text Classifiers
- arxiv url: http://arxiv.org/abs/2405.10523v1
- Date: Fri, 17 May 2024 04:05:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:02:02.198487
- Title: Smart Expert System: Large Language Models as Text Classifiers
- Title(参考訳): スマートエキスパートシステム:テキスト分類器としての大規模言語モデル
- Authors: Zhiqiang Wang, Yiran Pang, Yanbin Lin,
- Abstract要約: 本稿では,Large Language Models (LLM) をテキスト分類器として活用する新しいアプローチであるSmart Expert Systemを紹介する。
このシステムは従来のテキスト分類ワークフローを単純化し、広範な前処理やドメインの専門知識を必要としない。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
- 参考スコア(独自算出の注目度): 3.218954041700146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text classification is a fundamental task in Natural Language Processing (NLP), and the advent of Large Language Models (LLMs) has revolutionized the field. This paper introduces the Smart Expert System, a novel approach that leverages LLMs as text classifiers. The system simplifies the traditional text classification workflow, eliminating the need for extensive preprocessing and domain expertise. The performance of several LLMs, machine learning (ML) algorithms, and neural network (NN) based structures is evaluated on four datasets. Results demonstrate that certain LLMs surpass traditional methods in sentiment analysis, spam SMS detection and multi-label classification. Furthermore, it is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies, making the fine-tuned model the top performer across all datasets. Source code and datasets are available in this GitHub repository: https://github.com/yeyimilk/llm-zero-shot-classifiers.
- Abstract(参考訳): テキスト分類は自然言語処理(NLP)の基本課題であり、Large Language Models(LLM)の出現はこの分野に革命をもたらした。
本稿では,LLMをテキスト分類器として活用する新しいアプローチであるSmart Expert Systemを紹介する。
このシステムは従来のテキスト分類ワークフローを単純化し、広範な前処理やドメインの専門知識を必要としない。
複数のLLM、機械学習(ML)アルゴリズム、ニューラルネットワーク(NN)ベースの構造の性能を4つのデータセットで評価する。
その結果, 感情分析, スパムSMS検出, マルチラベル分類において, LLMが従来の手法を超越していることが示唆された。
さらに、いくつかのショットや微調整の戦略によってシステムのパフォーマンスをさらに向上できることが示され、細調整されたモデルがすべてのデータセットでトップパフォーマーとなる。
ソースコードとデータセットは、GitHubリポジトリで入手できる。
関連論文リスト
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
論文 参考訳(メタデータ) (2024-11-22T12:37:41Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Neural Architecture Search for Sentence Classification with BERT [4.862490782515929]
計算コストが小さいだけで,現在の単一層よりも優れたアーキテクチャを見つけるために,AutoML検索を実行します。
GLUEデータセットから,様々なNLPベンチマークを用いて分類アーキテクチャを検証する。
論文 参考訳(メタデータ) (2024-03-27T13:25:43Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Large Language Models Are Zero-Shot Text Classifiers [3.617781755808837]
大規模言語モデル(LLM)は、自然言語処理(NLP)の様々なサブカテゴリで広く使われている。
NLPでは、テキスト分類の問題はかなりの焦点が当てられているが、高価な計算コスト、時間消費、目に見えないクラスに対する堅牢なパフォーマンスに関連するいくつかの制限に直面している。
思考促進チェーン(CoT)の提案により、ステップ推論プロンプトを用いてゼロショット学習(ZSL)を用いてLLMを実装できる。
論文 参考訳(メタデータ) (2023-12-02T06:33:23Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
本稿では,テキスト生成に関わる大きな言語モデル (LLM) を識別するための新しいアプローチを提案する。
ベースLMに新たな分類層を追加する代わりに、分類タスクを次の注意すべき予測タスクとして再設定する。
実験のバックボーンとしてText-to-Text Transfer Transformer (T5) モデルを用いる。
論文 参考訳(メタデータ) (2023-11-15T06:33:52Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z) - Many-Class Text Classification with Matching [65.74328417321738]
textbfText textbfClassification をテキストとラベル間のtextbfMatching 問題として定式化し,TCM というシンプルなフレームワークを提案する。
従来のテキスト分類手法と比較して、TCMは分類ラベルのきめ細かい意味情報を活用している。
論文 参考訳(メタデータ) (2022-05-23T15:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。