Scalability enhancement of quantum computing under limited connectivity through distributed quantum computing
- URL: http://arxiv.org/abs/2405.10942v2
- Date: Tue, 11 Jun 2024 15:36:05 GMT
- Title: Scalability enhancement of quantum computing under limited connectivity through distributed quantum computing
- Authors: Shao-Hua Hu, George Biswas, Jun-Yi Wu,
- Abstract summary: We benchmark the two-QPU entanglement-assisted distributed quantum computing with single-QPU quantum computing.
We show the one-to-one correspondence of three figures of merits, namely average gate fidelity, heavy output probability, and linear cross-entropy.
- Score: 0.8602553195689513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We employ quantum-volume random-circuit sampling to benchmark the two-QPU entanglement-assisted distributed quantum computing (DQC) and compare it with single-QPU quantum computing. We first specify a single-qubit depolarizing noise model in the random circuit. Based on this error model, we show the one-to-one correspondence of three figures of merits, namely average gate fidelity, heavy output probability, and linear cross-entropy. We derive an analytical approximation of the average gate fidelity under the specified noise model, which is shown to align with numerical simulations. The approximation is calculated based on a noise propagation matrix obtained from the extended connectivity graph of a DQC device. In numerical simulation, we unveil the scalability enhancement in DQC for the QPUs with limited connectivity. Furthermore, we provide a simple formula to estimate the average gate fidelity, which also provides us with a heuristic method to evaluate the scalability enhancement in DQC, and a guide to optimize the structure of a DQC configuration.
Related papers
- Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration [0.5679775668038153]
We present a novel Adaptive Distribution Generator that leverages a quantum walks-based approach to generate high precision and efficiency of target probability distributions.
Our method integrates variational quantum circuits with discrete-time quantum walks, specifically, split-step quantum walks and their entangled extensions, to dynamically tune coin parameters and drive the evolution of quantum states towards desired distributions.
arXiv Detail & Related papers (2025-04-18T07:53:03Z) - Expressivity Limits of Quantum Reservoir Computing [0.0]
We establish a formal connection to parametrized quantum circuit quantum machine learning (PQC-QML)<n>We analytically prove, and numerically corroborate, that in QRC the number of non-linear functions that can be generated from classical data is bounded linearly by the number of input encoding gates.<n>Our results challenge the common assumption that exponential Hilbert space scaling confers a corresponding computational advantage in QRC.
arXiv Detail & Related papers (2025-01-26T13:43:03Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Expressivity of deterministic quantum computation with one qubit [3.399289369740637]
We introduce parameterized DQC1 as a quantum machine learning model.
We show that DQC1 is as powerful as quantum neural networks based on universal computation.
arXiv Detail & Related papers (2024-11-05T02:46:27Z) - Quantum Data Centers in the Presence of Noise [0.0]
Single-processor monolithic quantum computers are affected by increased cross talk and difficulty of implementing gates when the number of qubits is increased.
In a QDC, multiple quantum processing units (QPUs) are linked together over short distances, allowing the total number of computational qubits to be increased without increasing the number of qubits on any one processor.
In doing so, the error incurred by operations at each QPU can be kept small, however additional noise will be added to the system due to the latency cost and errors incurred during inter-QPU entanglement distribution.
arXiv Detail & Related papers (2024-07-15T14:50:20Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Towards Accurate Quantum Chemical Calculations on Noisy Quantum
Computers [6.810505212573329]
Variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm designed for noisy intermediate-scale quantum (NISQ) computers.
It is challenging to achieve it on current NISQ computers due to the significant impact of noises.
We present three approaches to mitigate the noise impact for the DMET+VQE combination.
arXiv Detail & Related papers (2023-11-16T07:36:15Z) - High-rate discretely-modulated continuous-variable quantum key
distribution using quantum machine learning [4.236937886028215]
We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies.
A low-complexity quantum k-nearest neighbor (QkNN) is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side.
Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols.
arXiv Detail & Related papers (2023-08-07T04:00:13Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC) approaches are an appealing route to utilising quantum hardware to perform quantum chemistry calculations.
We present a combined classical-quantum approach where a classical UCC pre-processing step is used to determine the important excitations in the UCC ansatz.
arXiv Detail & Related papers (2021-08-24T18:34:14Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.