Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
- URL: http://arxiv.org/abs/2405.10957v1
- Date: Fri, 5 Apr 2024 13:54:58 GMT
- Title: Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
- Authors: Lucas Böttcher, Gregory Wheeler,
- Abstract summary: The field of neuroscience and the development of artificial neural networks (ANNs) have mutually influenced each other.
In the first part of this chapter, we provide an overview of the principles, models, and applications of ANNs.
The second part of this chapter focuses on quantifying geometric properties and visualizing loss functions associated with deep ANNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of neuroscience and the development of artificial neural networks (ANNs) have mutually influenced each other, drawing from and contributing to many concepts initially developed in statistical mechanics. Notably, Hopfield networks and Boltzmann machines are versions of the Ising model, a model extensively studied in statistical mechanics for over a century. In the first part of this chapter, we provide an overview of the principles, models, and applications of ANNs, highlighting their connections to statistical mechanics and statistical learning theory. Artificial neural networks can be seen as high-dimensional mathematical functions, and understanding the geometric properties of their loss landscapes (i.e., the high-dimensional space on which one wishes to find extrema or saddles) can provide valuable insights into their optimization behavior, generalization abilities, and overall performance. Visualizing these functions can help us design better optimization methods and improve their generalization abilities. Thus, the second part of this chapter focuses on quantifying geometric properties and visualizing loss functions associated with deep ANNs.
Related papers
- High-dimensional learning of narrow neural networks [1.7094064195431147]
This manuscript reviews the tools and ideas underlying recent progress in machine learning.
We introduce a generic model -- the sequence multi-index model -- which encompasses numerous previously studied models as special instances.
We explicate in full detail the analysis of the learning of sequence multi-index models, using statistical physics techniques such as the replica method and approximate message-passing algorithms.
arXiv Detail & Related papers (2024-09-20T21:20:04Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
We introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation.
We provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated.
This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
arXiv Detail & Related papers (2024-05-24T17:19:57Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
We propose a theoretical approach based on Neural Tangent Kernels (NTKs) to investigate such mechanisms.
We reveal how these models leverage statistical features during gradient descent and how they are integrated into final decisions.
We find that while self-attention and CNN models may exhibit limitations in learning n-grams, multiplication-based models seem to excel in this area.
arXiv Detail & Related papers (2023-10-25T04:22:40Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Visualizing High-Dimensional Trajectories on the Loss-Landscape of ANNs [15.689418447376587]
Training artificial neural networks requires the optimization of highly non-dimensional loss functions.
Visualization tools have played a key role in uncovering key geometric characteristics of loss-landscape of ANNs.
We propose the modernity reduction method which represents the SOTA in terms both local and global structures.
arXiv Detail & Related papers (2021-01-31T16:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.