論文の概要: Photorealistic 3D Urban Scene Reconstruction and Point Cloud Extraction using Google Earth Imagery and Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2405.11021v1
- Date: Fri, 17 May 2024 18:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:46:29.527107
- Title: Photorealistic 3D Urban Scene Reconstruction and Point Cloud Extraction using Google Earth Imagery and Gaussian Splatting
- Title(参考訳): Google Earth画像とガウススプラッティングを用いた光現実的3次元都市景観復元と点雲抽出
- Authors: Kyle Gao, Dening Lu, Hongjie He, Linlin Xu, Jonathan Li,
- Abstract要約: ウォータールー大学を中心としたウォータールー地域の3次元ガウス散乱モデルを構築した。
我々は,従来の3次元視線合成結果よりもはるかに高い視線合成結果を得ることができる。
- 参考スコア(独自算出の注目度): 19.67372661944804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D urban scene reconstruction and modelling is a crucial research area in remote sensing with numerous applications in academia, commerce, industry, and administration. Recent advancements in view synthesis models have facilitated photorealistic 3D reconstruction solely from 2D images. Leveraging Google Earth imagery, we construct a 3D Gaussian Splatting model of the Waterloo region centered on the University of Waterloo and are able to achieve view-synthesis results far exceeding previous 3D view-synthesis results based on neural radiance fields which we demonstrate in our benchmark. Additionally, we retrieved the 3D geometry of the scene using the 3D point cloud extracted from the 3D Gaussian Splatting model which we benchmarked against our Multi- View-Stereo dense reconstruction of the scene, thereby reconstructing both the 3D geometry and photorealistic lighting of the large-scale urban scene through 3D Gaussian Splatting
- Abstract(参考訳): 3次元都市景観の再構築とモデリングは、遠隔センシングにおいて重要な研究領域であり、学術、商業、産業、行政における多くの応用がある。
ビュー合成モデルの最近の進歩は、2次元画像のみから光リアルな3D再構成を促進する。
Google Earthの画像を活用することで、ウォータールー大学を中心としたウォータールー地域の3次元ガウス散乱モデルを構築し、我々のベンチマークで示した神経放射場に基づく従来の3次元ビュー合成結果よりもはるかに高いビュー合成結果を得ることができる。
さらに,3次元ガウス散乱モデルから抽出した3次元点雲を用いてシーンの3次元形状を復元し,大規模都市景観の3次元幾何と光リアル照明の両方を3次元ガウス散乱により再構成した。
関連論文リスト
- Enhancement of 3D Gaussian Splatting using Raw Mesh for Photorealistic Recreation of Architectures [12.96911281844627]
本研究では,3次元ガウスモデルを用いて建物の基本形状を抽出する手法を提案する。
この調査は,建築設計分野における3次元再構築技術の有効性を向上する新たな可能性を開くものである。
論文 参考訳(メタデータ) (2024-07-22T07:29:38Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - Director3D: Real-world Camera Trajectory and 3D Scene Generation from Text [61.9973218744157]
実世界の3Dシーンと適応カメラトラジェクトリの両方を生成するように設計された,堅牢なオープンワールドテキスト・ツー・3D生成フレームワークであるDirector3Dを紹介する。
Director3Dは既存の手法よりも優れており、実世界の3D生成において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-06-25T14:42:51Z) - HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2 [1.1874952582465603]
私たちは、Microsoft HoloLens 2の能力をインスタント3Dガウススプレイティングに活用しています。
HoloLensセンサーデータを利用した新しいワークフローであるHoloGSを紹介し、前処理ステップの必要性を回避した。
文化遺産像の屋外シーンと細構造植物室内シーンの2つの自撮りシーンに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-05-03T11:08:04Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
本稿では,3次元スパース表現に拡散モデルを導入し,それらをニューラルレンダリング技術と組み合わせることで,直接3次元シーン生成のための新しいアーキテクチャを提案する。
具体的には、まず3次元拡散モデルを用いて、所定の幾何学の点レベルのテクスチャ色を生成し、次にフィードフォワード方式でシーン表現に変換する。
2つの都市規模データセットを用いた実験により,衛星画像から写真リアルなストリートビュー画像シーケンスとクロスビュー都市シーンを生成する能力を示した。
論文 参考訳(メタデータ) (2024-01-19T16:15:37Z) - MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices [78.20154723650333]
高品質な3次元地下構造は3次元物体再構成評価に不可欠である。
本稿では,モバイルデバイスを用いた新しいマルチビューRGBDデータセットを提案する。
我々は,ハイエンド3Dスキャナーを使わずに,精密な3次元地下構造が得られる。
論文 参考訳(メタデータ) (2023-03-03T14:02:50Z) - Learning 3D Scene Priors with 2D Supervision [37.79852635415233]
本研究では,3次元の地平を必要とせず,レイアウトや形状の3次元シーンを学習するための新しい手法を提案する。
提案手法は, 3次元シーンを潜在ベクトルとして表現し, クラスカテゴリを特徴とするオブジェクト列に段階的に復号化することができる。
3D-FRONT と ScanNet による実験により,本手法は単一視点再構成における技術状況よりも優れていた。
論文 参考訳(メタデータ) (2022-11-25T15:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。