論文の概要: The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems
- arxiv url: http://arxiv.org/abs/2405.11053v2
- Date: Tue, 21 May 2024 00:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:23:37.942705
- Title: The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems
- Title(参考訳): MovieLensの信奉データ:オンラインレコメンダシステムのためのプレChoiceデータ収集
- Authors: Guy Aridor, Duarte Goncalves, Ruoyan Kong, Daniel Kluver, Joseph Konstan,
- Abstract要約: 本稿では,未経験項目に対するユーザの信念を収集する手法を提案する。
提案手法はMovieLensプラットフォーム上で実装され,ユーザ評価,信念,監視されたレコメンデーションを組み合わせた豊富なデータセットが得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasingly important aspect of designing recommender systems involves considering how recommendations will influence consumer choices. This paper addresses this issue by introducing a method for collecting user beliefs about un-experienced items - a critical predictor of choice behavior. We implemented this method on the MovieLens platform, resulting in a rich dataset that combines user ratings, beliefs, and observed recommendations. We document challenges to such data collection, including selection bias in response and limited coverage of the product space. This unique resource empowers researchers to delve deeper into user behavior and analyze user choices absent recommendations, measure the effectiveness of recommendations, and prototype algorithms that leverage user belief data, ultimately leading to more impactful recommender systems. The dataset can be found at https://grouplens.org/datasets/movielens/ml_belief_2024/.
- Abstract(参考訳): レコメンデーションシステムをデザインする上でますます重要な側面は、リコメンデーションが消費者の選択にどのように影響するかを検討することである。
本稿では,未経験項目に対するユーザの信念を収集する手法を導入することでこの問題に対処する。
この手法をMovieLensプラットフォームに実装し,ユーザ評価,信条,レコメンデーションを組み合わせたリッチデータセットを構築した。
このようなデータ収集の課題には、応答における選択バイアスや、製品空間の限定的なカバレッジなどが含まれる。
このユニークなリソースにより、研究者はユーザーの振る舞いを深く掘り下げ、不在のレコメンデーションを分析し、レコメンデーションの有効性を計測し、ユーザー信条データを活用するアルゴリズムのプロトタイプを作成することができ、最終的にはより影響力のあるレコメンデーションシステムに繋がる。
データセットはhttps://grouplens.org/datasets/movielens/ml_belief_2024/で見ることができる。
関連論文リスト
- Explainable Active Learning for Preference Elicitation [0.0]
我々は、最小限のユーザ労力で情報取得を最大化することを目的として、この問題を解決するためにアクティブラーニング(AL)を採用している。
ALは、大きなラベルのない集合から情報的データを選択して、それらをラベル付けするオラクルを問い合わせる。
ベースとなる機械学習(ML)モデルを更新するために、ユーザからのフィードバック(提示された項目に関するシステムの説明のために)を情報的なサンプルから収集する。
論文 参考訳(メタデータ) (2023-09-01T09:22:33Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
制御可能なテキストレコメンデーションのための新しい概念値ボトルネックモデル LACE を提案する。
LACEは、人間の読みやすい概念の簡潔なセットで各ユーザーを表現する。
ユーザ文書に基づいて概念のパーソナライズされた表現を学習する。
論文 参考訳(メタデータ) (2023-04-09T14:52:18Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
近年の研究では、因果的観点からレコメンデーターシステムをモデル化することで、デビアスを提案する。
この設定における重要な課題は、隠れた共同設立者を説明することだ。
我々は,ネットワーク情報(すなわち,ユーザ・ソーシャルおよびユーザ・イテムネットワーク)を活用して,隠れた共同創設者をよりよく近似することを提案する。
論文 参考訳(メタデータ) (2022-04-14T20:55:11Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Presentation of a Recommender System with Ensemble Learning and Graph
Embedding: A Case on MovieLens [3.8848561367220276]
グループ分類とアンサンブル学習技術は,推薦システムにおける予測精度を高めるために用いられた。
The study was performed on the MovieLens datasets, and the obtained results showed the high efficiency of the present method。
論文 参考訳(メタデータ) (2020-07-15T12:52:15Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z) - MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive
Model Selection [110.87712780017819]
推薦システムにおけるユーザレベルの適応モデル選択を容易にするメタラーニングフレームワークを提案する。
2つのパブリックデータセットと実世界のプロダクションデータセットで実験を行います。
論文 参考訳(メタデータ) (2020-01-22T16:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。