論文の概要: The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems
- arxiv url: http://arxiv.org/abs/2405.11053v2
- Date: Tue, 21 May 2024 00:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:23:37.942705
- Title: The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems
- Title(参考訳): MovieLensの信奉データ:オンラインレコメンダシステムのためのプレChoiceデータ収集
- Authors: Guy Aridor, Duarte Goncalves, Ruoyan Kong, Daniel Kluver, Joseph Konstan,
- Abstract要約: 本稿では,未経験項目に対するユーザの信念を収集する手法を提案する。
提案手法はMovieLensプラットフォーム上で実装され,ユーザ評価,信念,監視されたレコメンデーションを組み合わせた豊富なデータセットが得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasingly important aspect of designing recommender systems involves considering how recommendations will influence consumer choices. This paper addresses this issue by introducing a method for collecting user beliefs about un-experienced items - a critical predictor of choice behavior. We implemented this method on the MovieLens platform, resulting in a rich dataset that combines user ratings, beliefs, and observed recommendations. We document challenges to such data collection, including selection bias in response and limited coverage of the product space. This unique resource empowers researchers to delve deeper into user behavior and analyze user choices absent recommendations, measure the effectiveness of recommendations, and prototype algorithms that leverage user belief data, ultimately leading to more impactful recommender systems. The dataset can be found at https://grouplens.org/datasets/movielens/ml_belief_2024/.
- Abstract(参考訳): レコメンデーションシステムをデザインする上でますます重要な側面は、リコメンデーションが消費者の選択にどのように影響するかを検討することである。
本稿では,未経験項目に対するユーザの信念を収集する手法を導入することでこの問題に対処する。
この手法をMovieLensプラットフォームに実装し,ユーザ評価,信条,レコメンデーションを組み合わせたリッチデータセットを構築した。
このようなデータ収集の課題には、応答における選択バイアスや、製品空間の限定的なカバレッジなどが含まれる。
このユニークなリソースにより、研究者はユーザーの振る舞いを深く掘り下げ、不在のレコメンデーションを分析し、レコメンデーションの有効性を計測し、ユーザー信条データを活用するアルゴリズムのプロトタイプを作成することができ、最終的にはより影響力のあるレコメンデーションシステムに繋がる。
データセットはhttps://grouplens.org/datasets/movielens/ml_belief_2024/で見ることができる。
関連論文リスト
- CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence [55.21518669075263]
CURE4Recは、レコメンデーションアンラーニング評価のための最初の包括的なベンチマークである。
さまざまな影響レベルのデータに対する推薦公正性と堅牢性に対するアンラーニングの影響について検討する。
論文 参考訳(メタデータ) (2024-08-26T16:21:50Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
レビューベースのレコメンデータシステムは、この分野において重要なサブフィールドとして現れている。
本稿では,これらのシステムを分類し,その特徴,有効性,限界を解析し,最先端の手法を要約する。
本稿では,マルチモーダルデータの統合,複数基準評価情報の統合,倫理的考察など,今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-09T05:45:18Z) - The Fault in Our Recommendations: On the Perils of Optimizing the Measurable [2.6217304977339473]
エンゲージメントの最適化は、大きなユーティリティ損失をもたらす可能性があることを示す。
我々は、最初は人気コンテンツとニッチコンテンツの混在を推奨するユーティリティ・アウェア・ポリシーを提案する。
論文 参考訳(メタデータ) (2024-05-07T02:12:17Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
推薦性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
論文 参考訳(メタデータ) (2024-05-03T15:02:55Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - Explainable Active Learning for Preference Elicitation [0.0]
我々は、最小限のユーザ労力で情報取得を最大化することを目的として、この問題を解決するためにアクティブラーニング(AL)を採用している。
ALは、大きなラベルのない集合から情報的データを選択して、それらをラベル付けするオラクルを問い合わせる。
ベースとなる機械学習(ML)モデルを更新するために、ユーザからのフィードバック(提示された項目に関するシステムの説明のために)を情報的なサンプルから収集する。
論文 参考訳(メタデータ) (2023-09-01T09:22:33Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
制御可能なテキストレコメンデーションのための新しい概念値ボトルネックモデル LACE を提案する。
LACEは、人間の読みやすい概念の簡潔なセットで各ユーザーを表現する。
ユーザ文書に基づいて概念のパーソナライズされた表現を学習する。
論文 参考訳(メタデータ) (2023-04-09T14:52:18Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
近年の研究では、因果的観点からレコメンデーターシステムをモデル化することで、デビアスを提案する。
この設定における重要な課題は、隠れた共同設立者を説明することだ。
我々は,ネットワーク情報(すなわち,ユーザ・ソーシャルおよびユーザ・イテムネットワーク)を活用して,隠れた共同創設者をよりよく近似することを提案する。
論文 参考訳(メタデータ) (2022-04-14T20:55:11Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。