論文の概要: Enabling mixed-precision with the help of tools: A Nekbone case study
- arxiv url: http://arxiv.org/abs/2405.11065v1
- Date: Fri, 17 May 2024 19:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:36:45.748926
- Title: Enabling mixed-precision with the help of tools: A Nekbone case study
- Title(参考訳): ツールの助けを借りて混合精度を実現する:ネクボーンのケーススタディ
- Authors: Yanxiang Chen, Pablo de Oliveira Castro, Paolo Bientinesi, Roman Iakymchuk,
- Abstract要約: 本稿では,コンピュータ算術ツールと屋上モデルを用いて混合精度を実現する手法を提案する。
得られた混合精度プログラムを,精度,解答時間,解答エネルギーの3次元で組み合わせて評価した。
- 参考スコア(独自算出の注目度): 1.9249287163937974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed-precision computing has the potential to significantly reduce the cost of exascale computations, but determining when and how to implement it in programs can be challenging. In this article, we consider Nekbone, a mini-application for the CFD solver Nek5000, as a case study, and propose a methodology for enabling mixed-precision with the help of computer arithmetic tools and roofline model. We evaluate the derived mixed-precision program by combining metrics in three dimensions: accuracy, time-to-solution, and energy-to-solution. Notably, the introduction of mixed-precision in Nekbone, reducing time-to-solution by 40.7% and energy-to-solution by 47% on 128 MPI ranks.
- Abstract(参考訳): 混合精度計算は、エクサスケール計算のコストを大幅に削減する可能性があるが、いつ、どのようにプログラムに実装するかを決定することは困難である。
本稿では,CFD ソルバ Nek5000 のミニアプリケーションである Nekbone をケーススタディとして,計算機演算ツールと屋上モデルを用いて混合精度を実現する手法を提案する。
得られた混合精度プログラムを,精度,解答時間,解答エネルギーの3次元で組み合わせて評価した。
特に、ネクボーンに混合精度を導入し、40.7%の溶出時間と128メガワットの溶出エネルギーを47%の精度で削減した。
関連論文リスト
- Joint Pruning and Channel-wise Mixed-Precision Quantization for Efficient Deep Neural Networks [10.229120811024162]
ディープニューラルネットワーク(DNN)は、エッジデバイスへのデプロイメントに重大な課題をもたらす。
この問題に対処する一般的なアプローチは、プルーニングと混合精度量子化である。
そこで本研究では,軽量な勾配探索を用いて共同で適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T08:07:02Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Performance of Commercial Quantum Annealing Solvers for the Capacitated
Vehicle Routing Problem [0.0]
この研究は30時間以上にわたって、商用プラットフォームへのアクセスを広範囲に分析してきた。
絶対誤差は0.12から0.55であり、量子プロセッサユニット(QPU)時間は30から46マイクロ秒である。
論文 参考訳(メタデータ) (2023-09-11T15:51:22Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
量子化は、性能を維持しながら推論の計算コストを下げることができることを示す。
4つの標準PDEデータセットと3つのネットワークアーキテクチャの結果、量子化対応のトレーニングは、設定と3桁のFLOPで機能することがわかった。
論文 参考訳(メタデータ) (2023-08-14T09:21:19Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - Effective and Fast: A Novel Sequential Single Path Search for
Mixed-Precision Quantization [45.22093693422085]
混合精度量子化モデルは、異なる層の感度に応じて異なる量子化ビット精度にマッチし、優れた性能を達成できます。
いくつかの制約に従ってディープニューラルネットワークにおける各層の量子化ビット精度を迅速に決定することは難しい問題である。
混合精度量子化のための新規なシーケンシャルシングルパス探索(SSPS)法を提案する。
論文 参考訳(メタデータ) (2021-03-04T09:15:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。