論文の概要: Quantization Meets Reasoning: Exploring LLM Low-Bit Quantization Degradation for Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2501.03035v4
- Date: Mon, 24 Feb 2025 14:34:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:50:18.347833
- Title: Quantization Meets Reasoning: Exploring LLM Low-Bit Quantization Degradation for Mathematical Reasoning
- Title(参考訳): 量子化と推論 - 数学的推論のためのLLM低ビット量子化分解の探索
- Authors: Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, Hongxia Yang,
- Abstract要約: 大規模言語モデルは、MATHのような複雑な数学的推論ベンチマークにおいて大きな進歩を遂げた。
モデル量子化は、低い精度とビット幅の表現を用いることで、メモリ使用量と計算コストを削減する効果的な戦略として登場した。
- 参考スコア(独自算出の注目度): 29.687113675756127
- License:
- Abstract: Large language models have achieved significant advancements in complex mathematical reasoning benchmarks, such as MATH. However, their substantial computational requirements present challenges for practical deployment. Model quantization has emerged as an effective strategy to reduce memory usage and computational costs by employing lower precision and bit-width representations. In this study, we systematically evaluate the impact of quantization on mathematical reasoning tasks. Our results demonstrate that aggressive quantization methods like AWQ and GPTQ introduce up to 32.39% accuracy degradation (average 11.31%) on Llama-3 models, particularly in numerical computation and reasoning planning. To address this, we introduce a multidimensional evaluation framework combining qualitative capability analysis and quantitative error assessment. We further develop targeted recovery strategies, showing that fine-tuning quantized models on only 545 task-specific examples for 3 minutes on 4 GPUs effectively restores reasoning capabilities to near full-precision levels. Additionally, our error assessment pipeline achieves 98.9% accuracy in diagnosing and localizing errors across 3,366 failure cases, providing actionable insights for mitigating quantization-induced degradation.
- Abstract(参考訳): 大規模言語モデルは、MATHのような複雑な数学的推論ベンチマークにおいて大きな進歩を遂げた。
しかし、その相当な計算要求は、実際の展開の課題を提示する。
モデル量子化は、低い精度とビット幅の表現を用いることで、メモリ使用量と計算コストを削減する効果的な戦略として登場した。
本研究では,量子化が数学的推論タスクに与える影響を系統的に評価する。
AWQやGPTQのようなアグレッシブ量子化手法は,Llama-3モデルにおいて,特に数値計算や推論計画において,32.39%の精度劣化(平均11.31%)をもたらすことを示した。
そこで本稿では,定性的能力分析と量的誤り評価を組み合わせた多次元評価フレームワークを提案する。
さらに,4つのGPU上での3分間の545タスク固有例の微調整による量子化モデルにより,推論能力をほぼ完全精度のレベルまで効果的に復元できることを示す。
さらに,3,366件の障害事例のエラーの診断とローカライズにおいて,エラー評価パイプラインは98.9%の精度を実現し,量子化による劣化を緩和するための実用的な洞察を提供する。
関連論文リスト
- GAQAT: gradient-adaptive quantization-aware training for domain generalization [54.31450550793485]
そこで本研究では,DGのためのGAQAT(Gradient-Adaptive Quantization-Aware Training)フレームワークを提案する。
我々のアプローチは、低精度量子化におけるスケール・グラディエント・コンフリクト問題を特定することから始まる。
GAQATフレームワークの有効性を実験により検証した。
論文 参考訳(メタデータ) (2024-12-07T06:07:21Z) - Optimizing Large Language Models through Quantization: A Comparative Analysis of PTQ and QAT Techniques [0.0]
量子化はモデルサイズを最大68%削減できる。
Int8量子化は計算コストと消費電力を40%削減する。
Int4量子化はこれらの指標をさらに60%改善する。
論文 参考訳(メタデータ) (2024-11-09T06:30:13Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Effect of Weight Quantization on Learning Models by Typical Case
Analysis [6.9060054915724]
最近のデータ分析スケールの急増は、計算リソースの要求を大幅に増加させた。
量子化は、限られた計算資源を持つデバイスに大規模なモデルをデプロイするのに不可欠である。
論文 参考訳(メタデータ) (2024-01-30T18:58:46Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
量子化は、性能を維持しながら推論の計算コストを下げることができることを示す。
4つの標準PDEデータセットと3つのネットワークアーキテクチャの結果、量子化対応のトレーニングは、設定と3桁のFLOPで機能することがわかった。
論文 参考訳(メタデータ) (2023-08-14T09:21:19Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - Mixed Precision Post Training Quantization of Neural Networks with
Sensitivity Guided Search [7.392278887917975]
混合精度量子化により、異なるテンソルを様々な数値精度のレベルに量子化することができる。
我々は,コンピュータビジョンと自然言語処理の手法を評価し,最大27.59%,34.31%のレイテンシ低減を実証した。
論文 参考訳(メタデータ) (2023-02-02T19:30:00Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - SQuAT: Sharpness- and Quantization-Aware Training for BERT [43.049102196902844]
シャープネスと量子化アウェアトレーニング(SQuAT)を提案する。
提案手法は,2,3,4ビット条件下で,最先端の量子化BERTモデルよりも1%向上する。
また, シャープネスの測定実験により, 他の量子化法と比較して, より平坦な最小値が得られることが示唆された。
論文 参考訳(メタデータ) (2022-10-13T16:52:19Z) - Mixed-Precision Inference Quantization: Radically Towards Faster
inference speed, Lower Storage requirement, and Lower Loss [4.877532217193618]
既存の量子化技術は、経験と「微調整」スキルに大きく依存している。
本研究は,完全精度モデルよりも低損失の混合精密量子化モデルを得るための方法論を提供する。
特に、巨大なアイデンティティマッピングを持つニューラルネットワークが量子化法に耐性があることを実証する。
論文 参考訳(メタデータ) (2022-07-20T10:55:34Z) - A Survey of Quantization Methods for Efficient Neural Network Inference [75.55159744950859]
量子化は、必要なビット数を最小限に抑えるために、固定された離散数の集合に連続実数値を分散する問題である。
近年、コンピュータビジョン、自然言語処理、関連分野でのニューラルネットワークモデルの顕著な性能のために最前線に達しています。
浮動小数点表現から4ビット以下の低精度固定整数値への移行は、メモリフットプリントとレイテンシを16倍削減する可能性を秘めている。
論文 参考訳(メタデータ) (2021-03-25T06:57:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。