論文の概要: OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
- arxiv url: http://arxiv.org/abs/2405.11143v2
- Date: Mon, 3 Jun 2024 12:19:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-06-04 14:39:00.579350
- Title: OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
- Title(参考訳): OpenRLHF: 使いやすくスケーラブルで高性能なRLHFフレームワーク
- Authors: Jian Hu, Xibin Wu, Weixun Wang, Xianyu, Dehao Zhang, Yu Cao,
- Abstract要約: 提案するOpenRLHFは,効率的なRLHFスケーリングを実現するオープンソースフレームワークである。
OpenRLHFは、Ray、vLLM、DeepSpeedを使用して70Bパラメータを超えるモデルのスケジューリングを再設計する。
Hugging Faceとシームレスに統合されたOpenRLHFは、最適化されたアルゴリズムとローンチスクリプトを備えたアウトオブボックスソリューションを提供する。
- 参考スコア(独自算出の注目度): 11.556630218410444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) continue to grow by scaling laws, reinforcement learning from human feedback (RLHF) has gained significant attention due to its outstanding performance. However, unlike pretraining or fine-tuning a single model, scaling reinforcement learning from human feedback (RLHF) for training large language models poses coordination challenges across four models. We present OpenRLHF, an open-source framework enabling efficient RLHF scaling. Unlike existing RLHF frameworks that co-locate four models on the same GPUs, OpenRLHF re-designs scheduling for the models beyond 70B parameters using Ray, vLLM, and DeepSpeed, leveraging improved resource utilization and diverse training approaches. Integrating seamlessly with Hugging Face, OpenRLHF provides an out-of-the-box solution with optimized algorithms and launch scripts, which ensures user-friendliness. OpenRLHF implements RLHF, DPO, rejection sampling, and other alignment techniques. Empowering state-of-the-art LLM development, OpenRLHF's code is available at https://github.com/OpenLLMAI/OpenRLHF.
- Abstract(参考訳): 大規模言語モデル(LLM)は法則のスケーリングによって成長し続けており、人間のフィードバックからの強化学習(RLHF)はその卓越した性能のために大きな注目を集めている。
しかし、1つのモデルの事前訓練や微調整とは異なり、人間のフィードバック(RLHF)からの強化学習を拡大して、大きな言語モデルをトレーニングすることは、4つのモデル間で協調的な課題を引き起こす。
提案するOpenRLHFは,効率的なRLHFスケーリングを実現するオープンソースフレームワークである。
同じGPU上で4つのモデルを同時に配置する既存のRLHFフレームワークとは異なり、OpenRLHFは、Ray、vLLM、DeepSpeedを使用して70Bパラメータを超えるモデルのスケジューリングを再設計し、リソース利用の改善と多様なトレーニングアプローチを活用する。
Hugging Faceとシームレスに統合されたOpenRLHFは、最適化されたアルゴリズムとローンチスクリプトを備えたアウト・オブ・ボックスソリューションを提供する。
OpenRLHFはRLHF、DPO、拒絶サンプリング、その他のアライメント技術を実装している。
OpenRLHF のコードは https://github.com/OpenLLMAI/OpenRLHF で公開されている。
関連論文リスト
- Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits [59.30310692855397]
本稿では,RLHFパイプラインをコンテキスト的帯域幅の観点から統一したフレームワークを提案する。
RLHFプロセスは、(ポスト-)トレーニングとデプロイメントの2つのステージに分解します。
次に,各ステージごとに新しいアルゴリズムを開発し,統計的および計算効率の両面で有意な改善を示す。
論文 参考訳(メタデータ) (2025-02-11T02:36:01Z) - Does RLHF Scale? Exploring the Impacts From Data, Model, and Method [83.53178716807776]
本研究では,大規模言語モデルにおける人間のフィードバックからの強化学習のスケーリング特性について検討する。
RLHFフレームワークの主要なコンポーネント、モデルサイズ、データ構成、推論予算、およびそれらのパフォーマンスへの影響を分析します。
論文 参考訳(メタデータ) (2024-12-08T17:19:48Z) - Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models [11.624678008637623]
RLHFにおける生成と学習の分離を提案する。
非同期トレーニングは、オンラインだが非政治的なRLHFという未調査の制度に依存している。
非同期RLHFのさらなる計算最適化について検討するが、性能上のコストがかかることがわかった。
論文 参考訳(メタデータ) (2024-10-23T19:59:50Z) - How to Evaluate Reward Models for RLHF [51.31240621943791]
我々は、RLHF(Reinforcement Learning from Human Feedback)を通して強力な言語モデルを生成する能力を定量化する報酬モデルのための新しいベンチマークを導入する。
我々は,プロキシタスクの報酬モデルを評価することにより,下流LLM性能の予測モデルを構築した。
大規模クラウドソースによる人選好プラットフォーム上でのエンドツーエンドのRLHF実験をローンチした。
論文 参考訳(メタデータ) (2024-10-18T21:38:21Z) - MA-RLHF: Reinforcement Learning from Human Feedback with Macro Actions [46.608747360764035]
人間からのフィードバックからの強化学習(RLHF)は、大規模言語モデル(LLM)と人間の嗜好の整合性を示す。
トークンのシーケンスや高レベルの言語構造を含むマクロアクションを学習プロセスに組み込んだ,シンプルで効果的なRLHFフレームワークであるMA-RLHFを提案する。
論文 参考訳(メタデータ) (2024-10-03T17:55:13Z) - The Perfect Blend: Redefining RLHF with Mixture of Judges [68.58426626501883]
人間のフィードバックによる強化学習(RLHF)が,大規模言語モデル(LLM)の指導的アプローチとなっている。
MTLにRLHFを適用するには、現在、報酬モデルとデータの組み合わせに対する重み付けを慎重に調整する必要がある。
CGPO(Constrained Generative Policy Optimization)と呼ばれる新しいポストトレーニングパラダイムを導入する。
論文 参考訳(メタデータ) (2024-09-30T15:06:53Z) - RLHF Workflow: From Reward Modeling to Online RLHF [79.83927049253924]
本稿では,RLHF(Online Iterative Reinforcement Learning from Human Feedback)のワークフローについて報告する。
RLHFは、最近の大規模言語モデル(LLM)文学において、オフライン言語よりもはるかに優れていると広く報告されている。
教師付き微調整(SFT)と反復RLHFは,完全なオープンソースデータセットを用いて最先端の性能を得ることができることを示す。
論文 参考訳(メタデータ) (2024-05-13T15:50:39Z) - Parameter Efficient Reinforcement Learning from Human Feedback [27.687265760622918]
人間のフィードバックからの強化学習(RLHF)は、事前訓練された大言語と視覚言語モデルと人間の嗜好を効果的に一致させる。
微調整の計算負担を軽減するため、LoRAのような効率的な手法が導入された。
PE-RLHFセットアップを、要約、無害/重厚な応答生成、UI自動化、視覚的質問応答にまたがる6つの多様なデータセットでベンチマークする。
論文 参考訳(メタデータ) (2024-03-15T21:43:46Z) - TeaMs-RL: Teaching LLMs to Generate Better Instruction Datasets via Reinforcement Learning [7.9961739811640244]
大きな言語モデル(LLM)は、人間のアノテーションに大きく依存することによる課題に直面することが多い。
この作業では、強化学習(RL:Reinforcement Learning)へと方向転換します。
我々はRLを用いて、微調整だけで十分である基礎的な命令データセットを直接生成する。
論文 参考訳(メタデータ) (2024-03-13T16:57:57Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - OpenRL: A Unified Reinforcement Learning Framework [19.12129820612253]
先進的な強化学習(RL)フレームワークであるOpenRLを紹介する。
シングルエージェントの課題から複雑なマルチエージェントシステムまで、さまざまなタスクに対応するように設計されている。
自然言語処理(NLP)とRLを統合することで、研究者はRLトレーニングと言語中心のタスクを効果的に組み合わせることができる。
論文 参考訳(メタデータ) (2023-12-20T12:04:06Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
我々は,大規模言語モデル,Supervised Fine-Tuning (SFT) とReinforcement Learning from Human Feedback (RLHF) の2つの一般的な手法に着目した。
両手法の強みを生かした新しい手法であるSupervised Iterative Learning from Human Feedback (SuperHF)を提案する。
実験の結果,SuperHF は PPO ベースの RLHF を超え,高い報酬を低報酬ハッキングで容易にかつ好意的に取り除き,下流校正を改善し,GPT-4 ベースの定性評価スキームでも同様に実施し,実装は極めて簡単であった。
論文 参考訳(メタデータ) (2023-10-25T16:52:00Z) - A Long Way to Go: Investigating Length Correlations in RLHF [59.49656695716066]
本稿では, 応答長の最適化がRLHFの重要な要因であることを示す。
報酬の改善は、他の機能ではなく、レスポンス長の増加によって大きく引き起こされると思います。
純粋に長さベースの報酬でさえ、教師付き微調整モデルよりも下流のRLHFの改善を再現する。
論文 参考訳(メタデータ) (2023-10-05T17:38:28Z) - Aligning Large Multimodal Models with Factually Augmented RLHF [176.54751941088819]
大規模マルチモーダルモデル(LMM)はモダリティにまたがって構築され、2つのモダリティ間のミスアライメントは「ハロシン化」をもたらす。
テキスト領域から視覚言語アライメントのタスクまで,RLHF(Reinforcement Learning from Human Feedback)を適応させる。
本稿では、報酬モデルに付加的な事実情報を追加するFactually Augmented RLHFという新しいアライメントアルゴリズムを提案する。
提案手法は,テキストのみのGPT-4の性能レベルが94%であるLLaVA-Benchデータセットにおいて,顕著な改善を実現している。
論文 参考訳(メタデータ) (2023-09-25T20:59:33Z) - DeepSpeed-Chat: Easy, Fast and Affordable RLHF Training of ChatGPT-like
Models at All Scales [26.62712640037033]
本稿では、RLHFトレーニングを民主化し、AIコミュニティが利用できる新しいシステムであるDeepSpeed-Chatを紹介する。
DeepSpeed-Chatは、ChatGPTのようなモデルの使い勝手の良いトレーニングと推論エクスペリエンス、InstructGPTからトレーニングパイプラインを複製するDeepSpeed-RLHFパイプライン、トレーニングと推論のさまざまな最適化を統一的な方法で組み合わせた堅牢なDeepSpeed-RLHFシステム、の3つの重要な機能を提供する。
論文 参考訳(メタデータ) (2023-08-02T18:49:57Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPTは、SFT(Supervised Fine-Tuning)、報酬モデルトレーニング、PPO(Proximal Policy Optimization)など、いくつかの段階を通じてRLHFを実装している。
本稿では,条件付き確率の対数を用いて,異なるソースからのサンプル応答をスコアするRRHFという新しい学習パラダイムを提案する。
我々は、Helpful and Harmlessデータセット上でRRHFを評価し、報酬モデルスコアと人間ラベルによるPPOと同等のアライメント性能を示す。
論文 参考訳(メタデータ) (2023-04-11T15:53:40Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Reinforcement Learning with Augmented Data [97.42819506719191]
本稿では,ほとんどのRLアルゴリズムを拡張可能なシンプルなプラグイン・アンド・プレイモジュールであるReinforcement Learning with Augmented Data (RAD)を提案する。
本稿では,RLアルゴリズムが複雑な最先端手法より優れていることを示すために,ランダム翻訳,作物,カラージッタ,パッチカットアウト,ランダム畳み込み,振幅スケールなどの拡張法を提案する。
論文 参考訳(メタデータ) (2020-04-30T17:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。