Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation
- URL: http://arxiv.org/abs/2507.01509v1
- Date: Wed, 02 Jul 2025 09:16:58 GMT
- Title: Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation
- Authors: Tapas K. Dutta, Snehashis Majhi, Deepak Ranjan Nayak, Debesh Jha,
- Abstract summary: Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer.<n>We propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation.<n>By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges.<n>Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
- Score: 3.075778955462259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
Related papers
- SAM-Mamba: Mamba Guided SAM Architecture for Generalized Zero-Shot Polyp Segmentation [3.075778955462259]
Polyp segmentation in colonoscopy is crucial for detecting colorectal cancer.<n>Traditional segmentation models based on Convolutional Neural Networks (CNNs) struggle to capture detailed patterns and global context.<n>We propose the Mamba-guided Segment Anything Model (SAM-Mamba) for efficient polyp segmentation.
arXiv Detail & Related papers (2024-12-11T15:47:54Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation [10.152504573356413]
We propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task.
Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result.
arXiv Detail & Related papers (2024-05-18T02:48:39Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Polyper: Boundary Sensitive Polyp Segmentation [32.00049708774388]
We present a new boundary sensitive framework for polyp segmentation, called Polyper.
Our method is motivated by a clinical approach that seasoned medical practitioners often leverage the inherent features of interior polyp regions to tackle blurred boundaries.
To evaluate the effectiveness of Polyper, we conduct experiments on five publicly available challenging datasets, and receive state-of-the-art performance on all of them.
arXiv Detail & Related papers (2023-12-14T08:27:00Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
We propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model.
A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied.
To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets.
arXiv Detail & Related papers (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.