BDG-Net: Boundary Distribution Guided Network for Accurate Polyp
Segmentation
- URL: http://arxiv.org/abs/2201.00767v1
- Date: Mon, 3 Jan 2022 17:15:18 GMT
- Title: BDG-Net: Boundary Distribution Guided Network for Accurate Polyp
Segmentation
- Authors: Zihuan Qiu, Zhichuan Wang, Miaomiao Zhang, Ziyong Xu, Jie Fan, Linfeng
Xu
- Abstract summary: Polypectomy can effectively interrupt the progression of adenoma to adenocarcinoma.
Due to the different sizes of polyps and the unclear boundary between polyps and their surrounding mucosa, it is challenging to segment polyps accurately.
We design a Boundary Distribution Guided Network (BDG-Net) for accurate polyp segmentation.
- Score: 9.175022232984709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colorectal cancer (CRC) is one of the most common fatal cancer in the world.
Polypectomy can effectively interrupt the progression of adenoma to
adenocarcinoma, thus reducing the risk of CRC development. Colonoscopy is the
primary method to find colonic polyps. However, due to the different sizes of
polyps and the unclear boundary between polyps and their surrounding mucosa, it
is challenging to segment polyps accurately. To address this problem, we design
a Boundary Distribution Guided Network (BDG-Net) for accurate polyp
segmentation. Specifically, under the supervision of the ideal Boundary
Distribution Map (BDM), we use Boundary Distribution Generate Module (BDGM) to
aggregate high-level features and generate BDM. Then, BDM is sent to the
Boundary Distribution Guided Decoder (BDGD) as complementary spatial
information to guide the polyp segmentation. Moreover, a multi-scale feature
interaction strategy is adopted in BDGD to improve the segmentation accuracy of
polyps with different sizes. Extensive quantitative and qualitative evaluations
demonstrate the effectiveness of our model, which outperforms state-of-the-art
models remarkably on five public polyp datasets while maintaining low
computational complexity.
Related papers
- Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation [10.152504573356413]
We propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task.
Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result.
arXiv Detail & Related papers (2024-05-18T02:48:39Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation [0.0]
This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
arXiv Detail & Related papers (2021-05-02T06:36:36Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Colorectal Polyp Segmentation by U-Net with Dilation Convolution [9.840695333927496]
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
arXiv Detail & Related papers (2019-12-26T23:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.