ReModels: Quantile Regression Averaging models
- URL: http://arxiv.org/abs/2405.11372v1
- Date: Sat, 18 May 2024 19:13:49 GMT
- Title: ReModels: Quantile Regression Averaging models
- Authors: Grzegorz Zakrzewski, Kacper Skonieczka, Mikołaj Małkiński, Jacek Mańdziuk,
- Abstract summary: We present a Python package that encompasses the implementation of the Quantile Regression Averaging (QRA) method.
The proposed package also facilitates the acquisition and preparation of data related to electricity markets, as well as the evaluation of model predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electricity price forecasts play a crucial role in making key business decisions within the electricity markets. A focal point in this domain are probabilistic predictions, which delineate future price values in a more comprehensive manner than simple point forecasts. The golden standard in probabilistic approaches to predict energy prices is the Quantile Regression Averaging (QRA) method. In this paper, we present a Python package that encompasses the implementation of QRA, along with modifications of this approach that have appeared in the literature over the past few years. The proposed package also facilitates the acquisition and preparation of data related to electricity markets, as well as the evaluation of model predictions.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
We examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones.
We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the predictive distributions.
Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets.
arXiv Detail & Related papers (2024-04-02T19:50:36Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
arXiv Detail & Related papers (2024-03-29T12:34:57Z) - Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices [0.0]
We present a first study of Bayesian forecasting of electricity prices traded on the German continuous intraday market.
For validation we use the exceedingly volatile electricity prices of 2022, which have hardly been the subject of forecasting studies before.
We challenge the declared gold standard of using LASSO for feature selection in electricity price forecasting by presenting strong statistical evidence that OMP leads to better forecasting performance.
arXiv Detail & Related papers (2024-03-08T16:51:27Z) - A probabilistic forecast methodology for volatile electricity prices in
the Australian National Electricity Market [0.36832029288386137]
The South Australia region of the Australian National Electricity Market displays some of the highest levels of price volatility observed in modern electricity markets.
This paper outlines an approach to probabilistic forecasting under these extreme conditions, including spike filtration and several post-processing steps.
arXiv Detail & Related papers (2023-11-13T12:33:33Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
We consider several hybrid modelling approaches for forecasting energy spot prices in EPEC market.
Data was given in terms of electricity prices for 2013-2014 years, and test data as a year of 2015.
arXiv Detail & Related papers (2020-10-14T12:45:53Z) - Probabilistic multivariate electricity price forecasting using implicit
generative ensemble post-processing [0.0]
We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios.
Our ensemble post-processing method outperforms well-established model combination benchmarks.
As our method works on top of an ensemble of domain-specific expert models, it can readily be deployed to other forecasting tasks.
arXiv Detail & Related papers (2020-05-27T15:22:10Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.