論文の概要: MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections
- arxiv url: http://arxiv.org/abs/2405.11921v1
- Date: Mon, 20 May 2024 09:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:34:30.809532
- Title: MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections
- Title(参考訳): MirrorGaussian:鏡の反射を再現するために3Dガウスを反射する
- Authors: Jiayue Liu, Xiao Tang, Freeman Cheng, Roy Yang, Zhihao Li, Jianzhuang Liu, Yi Huang, Jiaqi Lin, Shiyong Liu, Xiaofei Wu, Songcen Xu, Chun Yuan,
- Abstract要約: MirrorGaussian は 3D Gaussian Splatting に基づくリアルタイムレンダリングによるミラーシーン再構築手法である。
本稿では,現実の3Dガウスと鏡面の両面の微分を可能にする直感的なデュアルレンダリング戦略を提案する。
我々の手法は既存の手法よりも優れており、最先端の結果が得られている。
- 参考スコア(独自算出の注目度): 58.003014868772254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.
- Abstract(参考訳): 3D Gaussian Splattingは、写真リアリスティックおよびリアルタイムの新規ビュー合成において顕著な進歩を見せている。
しかし、ミラー反射をモデル化する際の課題に直面しており、異なる視点からかなりの外見の変化が見られる。
この問題に対処するために,3次元ガウススティングに基づくリアルタイムレンダリングによるミラーシーン再構成手法であるMirrorGaussianを提案する。
重要な洞察は、現実世界空間と仮想ミラー空間の間のミラー対称性に基づいている。
実世界の3Dガウスと鏡面を反映した鏡面を区別可能なラスタ化を実現するための直感的な二重レンダリング手法を提案する。
すべての3Dガウスアンは、エンドツーエンドのフレームワークでミラープレーンと共同で最適化されている。
MirrorGaussianは、ミラー付きシーンで高品質でリアルタイムなレンダリングを実現し、新しいミラーやオブジェクトの追加のようなシーン編集の強化を実現している。
複数のデータセットに対する総合的な実験により、我々のアプローチは既存の手法を著しく上回り、最先端の結果が得られることを示した。
プロジェクトページ:https://mirror-gaussian.github.io/.com
関連論文リスト
- ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings [48.72040500647568]
幾何的解釈を用いた全方位画像の新規化パイプラインであるODGSについて述べる。
パイプライン全体が並列化され、最適化が達成され、NeRFベースの手法よりも100倍高速になる。
その結果、ODGSは大規模な3Dシーンを再構築しても、細部を効果的に復元できることがわかった。
論文 参考訳(メタデータ) (2024-10-28T02:45:13Z) - Gaussian Splatting in Mirrors: Reflection-Aware Rendering via Virtual Camera Optimization [14.324573496923792]
3D-GSはしばしばリフレクションを仮想空間と誤解し、ミラー内の曖昧で一貫性のないマルチビューレンダリングをもたらす。
本稿では,リフレクションを物理ベース仮想カメラとしてモデル化することで,高品質なマルチビュー一貫したリフレクションレンダリングを実現する手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T14:53:24Z) - Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections [26.02117310176884]
拡散型生成モデルを用いて、高現実的で可視なミラー反射を生成する問題に取り組む。
これを可能にするために、鏡の前にオブジェクトが置かれた多様な合成シーンの大規模なデータセットであるSynMirrorを作成します。
本研究では,高品質な幾何整合性およびフォトリアリスティックミラー反射を生成するミラーフュージョン法を提案する。
論文 参考訳(メタデータ) (2024-09-23T02:59:07Z) - Mirror-3DGS: Incorporating Mirror Reflections into 3D Gaussian Splatting [27.361324194709155]
Mirror-3DGSは、ミラー測地と反射の複雑さを習得するために設計された革新的なレンダリングフレームワークである。
鏡の属性を3DGSに組み込むことで、ミラー3DGSは鏡の後ろから観察するミラー化された視点を作り、シーンレンダリングのリアリズムを豊かにする。
論文 参考訳(メタデータ) (2024-04-01T15:16:33Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - Mirror-Aware Neural Humans [21.0548144424571]
我々は,カメラの自動校正により,市販の2Dポーズから始まるコンシューマレベルの3Dモーションキャプチャシステムを開発した。
我々は,身体モデル学習のメリットを実証的に実証し,難解なミラーシーンにおける隠蔽を考慮に入れた。
論文 参考訳(メタデータ) (2023-09-09T10:43:45Z) - Mirror-NeRF: Learning Neural Radiance Fields for Mirrors with
Whitted-Style Ray Tracing [33.852910220413655]
鏡の正確な形状と反射を学習できる新しいニューラルネットワーク・レンダリング・フレームワークであるMirror-NeRFを提案する。
Mirror-NeRFは、新しいオブジェクトやミラーをシーンに追加したり、鏡に新しいオブジェクトの反射を合成したり、様々なシーン操作アプリケーションをサポートする。
論文 参考訳(メタデータ) (2023-08-07T03:48:07Z) - Symmetry-Aware Transformer-based Mirror Detection [85.47570468668955]
デュアルパス・シンメトリ・アウェア・トランスフォーマーを用いたミラー検出ネットワーク(SATNet)を提案する。
SATNetにはSymmetry-Aware Attention Module (SAAM)とContrastとFusion Decoder Module (CFDM)の2つの新しいモジュールが含まれている。
実験の結果,SATNet は RGB と RGB-D の両方のミラー検出法に優れることがわかった。
論文 参考訳(メタデータ) (2022-07-13T16:40:01Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
本稿では,GAR(Generative Adversa Renderer)について紹介する。
GARは、グラフィックルールに頼るのではなく、複雑な現実世界のイメージをモデル化することを学ぶ。
本手法は,複数顔再構成における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-06T04:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。