論文の概要: Depth Reconstruction with Neural Signed Distance Fields in Structured Light Systems
- arxiv url: http://arxiv.org/abs/2405.12006v1
- Date: Mon, 20 May 2024 13:24:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:14:56.725966
- Title: Depth Reconstruction with Neural Signed Distance Fields in Structured Light Systems
- Title(参考訳): 構造光系におけるニューラルサイン付き距離場を用いた奥行き再構成
- Authors: Rukun Qiao, Hiroshi Kawasaki, Hongbin Zha,
- Abstract要約: 本稿では,3次元空間の暗黙的表現を用いた多フレーム構造光設定のための新しい深度推定手法を提案する。
我々のアプローチでは、自己教師付き微分可能レンダリングによって訓練された、ニューラルサイン付き距離場(SDF)を用いる。
- 参考スコア(独自算出の注目度): 15.603880588503355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel depth estimation technique for multi-frame structured light setups using neural implicit representations of 3D space. Our approach employs a neural signed distance field (SDF), trained through self-supervised differentiable rendering. Unlike passive vision, where joint estimation of radiance and geometry fields is necessary, we capitalize on known radiance fields from projected patterns in structured light systems. This enables isolated optimization of the geometry field, ensuring convergence and network efficacy with fixed device positioning. To enhance geometric fidelity, we incorporate an additional color loss based on object surfaces during training. Real-world experiments demonstrate our method's superiority in geometric performance for few-shot scenarios, while achieving comparable results with increased pattern availability.
- Abstract(参考訳): 本稿では,3次元空間の暗黙的表現を用いた多フレーム構造光設定のための新しい深度推定手法を提案する。
我々のアプローチでは、自己教師付き微分可能レンダリングによって訓練された、ニューラルサイン付き距離場(SDF)を用いる。
放射率と幾何場の合同推定が必要な受動的視覚とは異なり、構造化光系の投射パターンから既知の放射場を利用する。
これにより、幾何学分野の分離された最適化が可能となり、固定デバイス位置決めによる収束とネットワークの有効性が確保される。
幾何学的忠実度を高めるため、トレーニング中に物体表面に基づく色損失を付加する。
実世界の実験では、パターンの可利用性を高めながら、数ショットシナリオにおける幾何学的性能の優位性を実証している。
関連論文リスト
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - PBIR-NIE: Glossy Object Capture under Non-Distant Lighting [30.325872237020395]
グロッシーオブジェクトは自然光下での多視点入力画像から3次元再構成を行う上で重要な課題となる。
PBIR-NIEは, 物体の形状, 材料特性, 周囲の照明を均等に捉えるために設計された逆レンダリングフレームワークである。
論文 参考訳(メタデータ) (2024-08-13T13:26:24Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - SpecNeRF: Gaussian Directional Encoding for Specular Reflections [43.110815974867315]
近接場照明条件下でのビュー依存効果をより良くモデル化するための学習可能なガウス方向符号化法を提案する。
我々の新しい指向性符号化は、近接場照明の空間的に変化する性質を捉え、事前フィルタされた環境マップの挙動をエミュレートする。
これにより、粗さ係数の異なる任意の3次元位置において、事前変換された明色を効率よく評価することができる。
論文 参考訳(メタデータ) (2023-12-20T15:20:25Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
本稿では,高頻度幾何細部リカバリとアンチエイリアス化された新しいビューレンダリングのための効率的なニューラル表現であるLoD-NeuSを提案する。
我々の表現は、光線に沿った円錐状のフラストラム内の多面体化から空間特徴を集約する。
論文 参考訳(メタデータ) (2023-09-19T05:44:00Z) - Learning Visibility Field for Detailed 3D Human Reconstruction and
Relighting [19.888346124475042]
本稿では,新たな視界を付加した疎視的3次元人体再構成フレームワークを提案する。
提案手法の有効性を再現精度の観点から検証し, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-04-24T08:19:03Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - DeLiRa: Self-Supervised Depth, Light, and Radiance Fields [32.350984950639656]
可変ボリュームレンダリングは、3次元再構成と新しいビュー合成のための強力なパラダイムである。
標準的なボリュームレンダリングアプローチは、視点の多様性が限られている場合、縮退したジオメトリーと競合する。
本研究では,多視点測光目標を体積レンダリングのための幾何正則化器として用いることを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:16:25Z) - Geo-NI: Geometry-aware Neural Interpolation for Light Field Rendering [57.775678643512435]
光場レンダリングのためのGeo-NI(Geometry-aware Neural Interpolation)フレームワークを提案する。
NIとDIBRの優位性を組み合わせることで、提案したGeo-NIは、大きな差異でビューをレンダリングすることができる。
論文 参考訳(メタデータ) (2022-06-20T12:25:34Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。