Kernel spectral joint embeddings for high-dimensional noisy datasets using duo-landmark integral operators
- URL: http://arxiv.org/abs/2405.12317v1
- Date: Mon, 20 May 2024 18:29:36 GMT
- Title: Kernel spectral joint embeddings for high-dimensional noisy datasets using duo-landmark integral operators
- Authors: Xiucai Ding, Rong Ma,
- Abstract summary: We propose a novel kernel spectral method that achieves joint embeddings of two independently observed high-dimensional noisy datasets.
The obtained low-dimensional embeddings can be utilized for many downstream tasks such as simultaneous clustering, data visualization, and denoising.
- Score: 9.782959684053631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrative analysis of multiple heterogeneous datasets has become standard practice in many research fields, especially in single-cell genomics and medical informatics. Existing approaches oftentimes suffer from limited power in capturing nonlinear structures, insufficient account of noisiness and effects of high-dimensionality, lack of adaptivity to signals and sample sizes imbalance, and their results are sometimes difficult to interpret. To address these limitations, we propose a novel kernel spectral method that achieves joint embeddings of two independently observed high-dimensional noisy datasets. The proposed method automatically captures and leverages possibly shared low-dimensional structures across datasets to enhance embedding quality. The obtained low-dimensional embeddings can be utilized for many downstream tasks such as simultaneous clustering, data visualization, and denoising. The proposed method is justified by rigorous theoretical analysis. Specifically, we show the consistency of our method in recovering the low-dimensional noiseless signals, and characterize the effects of the signal-to-noise ratios on the rates of convergence. Under a joint manifolds model framework, we establish the convergence of ultimate embeddings to the eigenfunctions of some newly introduced integral operators. These operators, referred to as duo-landmark integral operators, are defined by the convolutional kernel maps of some reproducing kernel Hilbert spaces (RKHSs). These RKHSs capture the either partially or entirely shared underlying low-dimensional nonlinear signal structures of the two datasets. Our numerical experiments and analyses of two single-cell omics datasets demonstrate the empirical advantages of the proposed method over existing methods in both embeddings and several downstream tasks.
Related papers
- Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
We propose a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees.
Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure.
We show that in a high-dimensional regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables.
arXiv Detail & Related papers (2024-07-01T18:48:55Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
We propose two techniques for producing high-quality naturalistic synthetic occluded faces.
We empirically show the effectiveness and robustness of both methods, even for unseen occlusions.
We present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild.
arXiv Detail & Related papers (2022-05-12T17:03:57Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations.
The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold.
The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction.
arXiv Detail & Related papers (2022-02-28T22:46:34Z) - Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data [0.0]
High-dimensional classification and feature selection are ubiquitous with the recent advancement in data acquisition technology.
These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately.
We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework.
arXiv Detail & Related papers (2021-09-29T03:35:49Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Federated Learning with Compression: Unified Analysis and Sharp
Guarantees [39.092596142018195]
Communication cost is often a critical bottleneck to scale up distributed optimization algorithms to collaboratively learn a model from millions of devices.
Two notable trends to deal with the communication overhead of federated compression and computation are unreliable compression and heterogeneous communication.
We analyze their convergence in both homogeneous and heterogeneous data distribution settings.
arXiv Detail & Related papers (2020-07-02T14:44:07Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.