MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
- URL: http://arxiv.org/abs/2405.12519v1
- Date: Tue, 21 May 2024 06:12:24 GMT
- Title: MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
- Authors: Zhaoning Yu, Hongyang Gao,
- Abstract summary: Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging.
Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability.
We introduce an innovative textbfMotif-btextbfAsed textbfGNN textbfExplainer (MAGE) that uses motifs as fundamental units for generating explanations.
- Score: 16.129359492539095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging. Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability. This limitation stems from XGNN's atom-by-atom approach and GNNInterpreter's reliance on average graph embeddings, which overlook the essential structural elements crucial for molecules. To address these gaps, we introduce an innovative \textbf{M}otif-b\textbf{A}sed \textbf{G}NN \textbf{E}xplainer (MAGE) that uses motifs as fundamental units for generating explanations. Our approach begins with extracting potential motifs through a motif decomposition technique. Then, we utilize an attention-based learning method to identify class-specific motifs. Finally, we employ a motif-based graph generator for each class to create molecular graph explanations based on these class-specific motifs. This novel method not only incorporates critical substructures into the explanations but also guarantees their validity, yielding results that are human-understandable. Our proposed method's effectiveness is demonstrated through quantitative and qualitative assessments conducted on six real-world molecular datasets.
Related papers
- Factorized Explainer for Graph Neural Networks [7.382632811417645]
Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data.
Post-hoc instance-level explanation methods have been proposed to understand GNN predictions.
We introduce a novel factorized explanation model with theoretical performance guarantees.
arXiv Detail & Related papers (2023-12-09T15:29:45Z) - Semantic Interpretation and Validation of Graph Attention-based
Explanations for GNN Models [9.260186030255081]
We propose a methodology for investigating the use of semantic attention to enhance the explainability of Graph Neural Network (GNN)-based models.
Our work extends existing attention-based graph explainability methods by analysing the divergence in the attention distributions in relation to semantically sorted feature sets.
We apply our methodology on a lidar pointcloud estimation model successfully identifying key semantic classes that contribute to enhanced performance.
arXiv Detail & Related papers (2023-08-08T12:34:32Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
arXiv Detail & Related papers (2022-05-20T02:50:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - MotifExplainer: a Motif-based Graph Neural Network Explainer [19.64574177805823]
We propose a novel method to explain Graph Neural Networks (GNNs) by identifying important motifs, recurrent and statistically significant patterns in graphs.
Our proposed motif-based methods can provide better human-understandable explanations than methods based on nodes, edges, and regular subgraphs.
arXiv Detail & Related papers (2022-02-01T16:11:21Z) - Motif-based Graph Self-Supervised Learning forMolecular Property
Prediction [12.789013658551454]
Graph Neural Networks (GNNs) have demonstrated remarkable success in various molecular generation and prediction tasks.
Most existing self-supervised pre-training frameworks for GNNs only focus on node-level or graph-level tasks.
We propose a novel self-supervised motif generation framework for GNNs.
arXiv Detail & Related papers (2021-10-03T11:45:51Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.