Quantifying Emergence in Large Language Models
- URL: http://arxiv.org/abs/2405.12617v1
- Date: Tue, 21 May 2024 09:12:20 GMT
- Title: Quantifying Emergence in Large Language Models
- Authors: Hang Chen, Xinyu Yang, Jiaying Zhu, Wenya Wang,
- Abstract summary: We propose a quantifiable solution for estimating emergence of LLMs.
Inspired by emergentism in dynamics, we quantify the strength of emergence by comparing the entropy reduction of the macroscopic (semantic) level with that of the microscopic (token) level.
Our method demonstrates consistent behaviors across a suite of LMs under both in-context learning (ICL) and natural sentences.
- Score: 31.608080868988825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergence, broadly conceptualized as the ``intelligent'' behaviors of LLMs, has recently been studied and proved challenging to quantify due to the lack of a measurable definition. Most commonly, it has been estimated statistically through model performances across extensive datasets and tasks, which consumes significant resources. In addition, such estimation is difficult to interpret and may not accurately reflect the models' intrinsic emergence. In this work, we propose a quantifiable solution for estimating emergence. Inspired by emergentism in dynamics, we quantify the strength of emergence by comparing the entropy reduction of the macroscopic (semantic) level with that of the microscopic (token) level, both of which are derived from the representations within the transformer block. Using a low-cost estimator, our quantification method demonstrates consistent behaviors across a suite of LMs (GPT-2, GEMMA, etc.) under both in-context learning (ICL) and natural sentences. Empirical results show that (1) our method gives consistent measurements which align with existing observations based on performance metrics, validating the effectiveness of our emergence quantification; (2) our proposed metric uncovers novel emergence patterns such as the correlations between the variance of our metric and the number of ``shots'' in ICL, which further suggests a new way of interpreting hallucinations in LLMs; (3) we offer a potential solution towards estimating the emergence of larger and closed-resource LMs via smaller LMs like GPT-2. Our codes are available at: https://github.com/Zodiark-ch/Emergence-of-LLMs/.
Related papers
- Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning [31.632816425798108]
Tokenization is a necessary component within the current architecture of many language models.
We show that tokenization pretraining can be a backdoor for bias and other unwanted content.
We relay evidence that the tokenization algorithm's objective function impacts the large language model's cognition.
arXiv Detail & Related papers (2024-12-14T18:18:52Z) - Large Concept Models: Language Modeling in a Sentence Representation Space [62.73366944266477]
We present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept.
Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow.
We show that our model exhibits impressive zero-shot generalization performance to many languages.
arXiv Detail & Related papers (2024-12-11T23:36:20Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
We evaluate language understanding capacities on simple inference tasks that most humans find trivial.
We target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments.
The models exhibit moderate to low performance on these evaluation sets.
arXiv Detail & Related papers (2023-05-24T06:41:09Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
We present a structured prompting approach for linguistic structured prediction tasks.
We evaluate this approach on part-of-speech tagging, named entity recognition, and sentence chunking.
We find that while PLMs contain significant prior knowledge of task labels due to task leakage into the pretraining corpus, structured prompting can also retrieve linguistic structure with arbitrary labels.
arXiv Detail & Related papers (2022-11-15T01:13:39Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - On the Evolution of Syntactic Information Encoded by BERT's
Contextualized Representations [11.558645364193486]
In this paper, we analyze the evolution of the embedded syntax trees along the fine-tuning process of BERT for six different tasks.
Experimental results show that the encoded information is forgotten (PoS tagging), reinforced (dependency and constituency parsing) or preserved (semantics-related tasks) in different ways along the fine-tuning process depending on the task.
arXiv Detail & Related papers (2021-01-27T15:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.