論文の概要: Quantifying Semantic Emergence in Language Models
- arxiv url: http://arxiv.org/abs/2405.12617v2
- Date: Wed, 18 Dec 2024 03:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:51.810347
- Title: Quantifying Semantic Emergence in Language Models
- Title(参考訳): 言語モデルにおける意味的創発の定量化
- Authors: Hang Chen, Xinyu Yang, Jiaying Zhu, Wenya Wang,
- Abstract要約: 大規模言語モデル (LLM) は意味論的意味を捉える特別な能力として広く認識されている。
本研究では,入力トークンから意味を抽出するLLMの能力を測定するために,量的指標である情報創発(IE)を導入する。
- 参考スコア(独自算出の注目度): 31.608080868988825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are widely recognized for their exceptional capacity to capture semantics meaning. Yet, there remains no established metric to quantify this capability. In this work, we introduce a quantitative metric, Information Emergence (IE), designed to measure LLMs' ability to extract semantics from input tokens. We formalize ``semantics'' as the meaningful information abstracted from a sequence of tokens and quantify this by comparing the entropy reduction observed for a sequence of tokens (macro-level) and individual tokens (micro-level). To achieve this, we design a lightweight estimator to compute the mutual information at each transformer layer, which is agnostic to different tasks and language model architectures. We apply IE in both synthetic in-context learning (ICL) scenarios and natural sentence contexts. Experiments demonstrate informativeness and patterns about semantics. While some of these patterns confirm the conventional prior linguistic knowledge, the rest are relatively unexpected, which may provide new insights.
- Abstract(参考訳): 大規模言語モデル (LLM) は意味論的意味を捉える特別な能力として広く認識されている。
しかし、この能力を定量化するための確立された指標はいまだに存在しない。
本研究では,入力トークンから意味を抽出するLLMの能力を測定するために,量的指標である情報創発(IE)を導入する。
トークン列から抽象化された意味情報として `semantics' を定式化し、トークン列(マクロレベル)と個々のトークン列(マイクロレベル)で観測されるエントロピーの減少を比較してこれを定量化する。
これを実現するために,異なるタスクや言語モデルアーキテクチャに依存しない変換器層間の相互情報を計算するための軽量な推定器を設計する。
テキスト内学習(ICL)シナリオと自然文コンテキストの両方にIEを適用した。
実験は意味論に関する情報とパターンを示す。
これらのパターンの中には、従来の言語知識を裏付けるものもあるが、残りは比較的予期しないものであり、新たな洞察を与える可能性がある。
関連論文リスト
- Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning [31.632816425798108]
トークン化は多くの言語モデルの現在のアーキテクチャにおいて必要なコンポーネントである。
トークンと事前学習がバイアスやその他の望ましくないコンテンツのバックドアとして機能するかについて議論する。
トークン化アルゴリズムの目的関数が大規模言語モデルの認知に影響を及ぼす証拠を中継する。
論文 参考訳(メタデータ) (2024-12-14T18:18:52Z) - Large Concept Models: Language Modeling in a Sentence Representation Space [62.73366944266477]
本稿では,概念を命名した明示的な高レベルな意味表現に基づくアーキテクチャの試みを行う。
概念は言語とモダリティに依存しないものであり、フローにおけるより高いレベルの考えや行動を表している。
本モデルでは,多くの言語に対して,ゼロショットの一般化性能が顕著であることを示す。
論文 参考訳(メタデータ) (2024-12-11T23:36:20Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
因果機械学習(ML)は、個々の治療効果を推定するための強力なツールを提供する。
ML手法は、医療応用にとって重要な解釈可能性の重要な課題に直面している。
統計的に厳密な変数重要度評価のための条件置換重要度(CPI)法に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-23T11:44:07Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
複素データ内の因子化属性とその相互関係を学習するための双方向重み付きグラフベースフレームワークを提案する。
具体的には、グラフの初期ノードとして要素を抽出する$beta$-VAEベースのモジュールを提案する。
これらの相補的加群を統合することで、我々は細粒度、実用性、教師なしの絡み合いをうまく達成できる。
論文 参考訳(メタデータ) (2024-07-26T15:32:21Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
大言語モデル(LLM)は、単語の意味を分散意味論の形でエンコードする。
近年の研究では、LLMは意図しない、一貫性のない、あるいは間違ったテキストを出力として生成する傾向があることが示されている。
本稿では,LLMとクラウドソースの知識表現を体系的に組み合わせた新しいアンサンブル学習手法であるInterpretable Ensemble Representation Learning (IERL)を提案する。
論文 参考訳(メタデータ) (2023-06-24T05:02:34Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Learning Efficient Coding of Natural Images with Maximum Manifold
Capacity Representations [4.666056064419346]
効率的な符号化仮説は、感覚系の応答特性が入力の統計に適応していることを提案する。
エレガントではあるものの、情報理論の特性は実際的な設定や最適化の目的関数として使うのが難しいことで知られている。
ここでは、多様体の容量を直接最適化し、最大多様体容量表現(MMCR)が得られるという仮定を概説する。
論文 参考訳(メタデータ) (2023-03-06T17:26:30Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
本稿では,言語構造予測タスクに対する構造化プロンプト手法を提案する。
提案手法は, 音声タグ付け, 名前付きエンティティ認識, 文チャンキングについて評価する。
PLMはタスクラベルの事前知識を事前学習コーパスに漏えいすることで有意な事前知識を含むが、構造化プロンプトは任意のラベルで言語構造を復元することも可能である。
論文 参考訳(メタデータ) (2022-11-15T01:13:39Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
我々は、意味的テキスト類似性のためのトピックインフォームド離散潜在変数モデルを開発した。
我々のモデルはベクトル量子化による文対表現のための共有潜在空間を学習する。
我々のモデルは意味的テキスト類似性タスクにおいて、いくつかの強力な神経ベースラインを超えることができることを示す。
論文 参考訳(メタデータ) (2022-11-07T15:09:58Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - On the Evolution of Syntactic Information Encoded by BERT's
Contextualized Representations [11.558645364193486]
本稿では,6つのタスクに対してBERTの微調整プロセスに沿って,組込み構文木の進化を解析する。
実験結果から, 符号化された情報は, タスクに応じて微調整プロセスに沿って, 忘れられ(PoSタグ付け), 強化された(依存度・隣接度解析) あるいは保存された(セマンティック関連タスク) 。
論文 参考訳(メタデータ) (2021-01-27T15:41:09Z) - Neural Methods for Point-wise Dependency Estimation [129.93860669802046]
我々は,2つの結果が共起する確率を定量的に測定する点依存度(PD)の推定に焦点をあてる。
提案手法の有効性を,1)MI推定,2)自己教師付き表現学習,3)クロスモーダル検索タスクで示す。
論文 参考訳(メタデータ) (2020-06-09T23:26:15Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。