論文の概要: Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2405.12625v1
- Date: Tue, 21 May 2024 09:26:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:49:12.105953
- Title: Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning
- Title(参考訳): 量子共振器の次元化と量子機械学習への応用
- Authors: Fan Yang, Furong Wang, Xusheng Xu, Pao Gao, Tao Xin, ShiJie Wei, Guilu Long,
- Abstract要約: 本稿では,入力データの次元を低減するために,量子共振器遷移に基づくQRDRアルゴリズムを提案する。
QRDR後、入力データの寸法$N$を所望のスケール$R$に減らし、元のデータの有効情報を保存する。
我々のアルゴリズムは様々な計算分野に応用できる可能性がある。
- 参考スコア(独自算出の注目度): 2.7119354495508787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is a promising candidate for accelerating machine learning tasks. Limited by the control accuracy of current quantum hardware, reducing the consumption of quantum resources is the key to achieving quantum advantage. Here, we propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data and accelerate the quantum machine learning algorithms. After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved correspondingly, which will reduce the computational complexity of subsequent quantum machine learning algorithms or quantum storage. QRDR operates with polylogarithmic time complexity and reduces the error dependency from the order of $1/\epsilon^3$ to the order of $1/\epsilon$, compared to existing algorithms. We demonstrate the performance of our algorithm combining with two types of quantum classifiers, quantum support vector machines and quantum convolutional neural networks, for classifying underwater detection targets and quantum many-body phase respectively. The simulation results indicate that reduced data improved the processing efficiency and accuracy following the application of QRDR. As quantum machine learning continues to advance, our algorithm has the potential to be utilized in a variety of computing fields.
- Abstract(参考訳): 量子コンピューティングは、機械学習タスクを加速するための有望な候補である。
現在の量子ハードウェアの制御精度によって制限されているため、量子リソースの消費を減らすことが、量子上の優位性を達成する鍵となる。
本稿では、入力データの次元を小さくし、量子機械学習アルゴリズムを高速化するために、量子共振器遷移に基づく量子共振器次元削減(QRDR)アルゴリズムを提案する。
QRDR後、入力データ$N$の次元を所望のスケール$R$に減らし、元のデータの有効情報をそれに応じて保存し、その後の量子機械学習アルゴリズムや量子ストレージの計算複雑性を低減させる。
QRDRは多変量時間で動作し、既存のアルゴリズムと比較して1/\epsilon^3$のオーダーから1/\epsilon$のオーダーに誤差依存性を減少させる。
本研究では,2種類の量子分類器,量子支援ベクトルマシンと量子畳み込みニューラルネットワークを組み合わせて,水中検出ターゲットと量子多体位相をそれぞれ分類するアルゴリズムの性能を示す。
シミュレーションの結果,QRDRの適用による処理効率と精度の向上が示唆された。
量子機械学習が進むにつれて、我々のアルゴリズムは様々な計算分野に応用される可能性がある。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
本研究では, トラップイオン量子シミュレータ, HEA-TI に適したハードウェア効率の変動量子アルゴリズムアンサッツについて検討する。
我々は、全てのイオン間のプログラム可能な単一量子ビット回転と大域スピンスピン相互作用を活用し、従来のゲートベース手法における資源集約型2量子ビットゲートへの依存を減らす。
論文 参考訳(メタデータ) (2024-07-03T14:02:20Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
この論文は、量子計算資源の要求を減らす2つの主要な技術を開発した。
目的は、現在の量子プロセッサでアプリケーションサイズをスケールアップすることだ。
アルゴリズムの応用の主な焦点は量子システムのシミュレーションであるが、開発したサブルーチンは最適化や機械学習の分野でさらに活用することができる。
論文 参考訳(メタデータ) (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
本稿では,従来の手法に比べてレイテンシの低い量子同値チェック手法QuBECを提案する。
提案手法は,ベンチマーク回路の検証時間を最大271.49倍に短縮する。
論文 参考訳(メタデータ) (2023-09-19T16:12:37Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
量子コンピューティングのノイズ中間スケール量子(NISQ)時代には、量子資源は限られている。
ボゾン基底と励起状態計算のための資源効率のよい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-23T19:00:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。