論文の概要: Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model
- arxiv url: http://arxiv.org/abs/2405.12754v3
- Date: Sun, 8 Sep 2024 15:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 02:31:55.487569
- Title: Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model
- Title(参考訳): 大域的局所フーリエニューラル演算子によるコロナ磁場の加速
- Authors: Yutao Du, Qin Li, Raghav Gnanasambandam, Mengnan Du, Haimin Wang, Bo Shen,
- Abstract要約: FNOの2つの分岐を含むグローバルローカルフーリエニューラル演算子(GL-FNO)を提案する。
GLFNOの性能は、FNO、U-NO、U-FNO、Vision Transformer、CNN-RNN、CNN-LSTMといった最先端のディープラーニング手法と比較される。
その結果、GL-FNOはMHDシミュレーションを加速するだけでなく、信頼性の高い予測能力も提供し、宇宙気象力学の理解に大きく貢献することが示された。
- 参考スコア(独自算出の注目度): 17.256941005824576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploring the outer atmosphere of the sun has remained a significant bottleneck in astrophysics, given the intricate magnetic formations that significantly influence diverse solar events. Magnetohydrodynamics (MHD) simulations allow us to model the complex interactions between the sun's plasma, magnetic fields, and the surrounding environment. However, MHD simulation is extremely time-consuming, taking days or weeks for simulation. The goal of this study is to accelerate coronal magnetic field simulation using deep learning, specifically, the Fourier Neural Operator (FNO). FNO has been proven to be an ideal tool for scientific computing and discovery in the literature. In this paper, we proposed a global-local Fourier Neural Operator (GL-FNO) that contains two branches of FNOs: the global FNO branch takes downsampled input to reconstruct global features while the local FNO branch takes original resolution input to capture fine details. The performance of the GLFNO is compared with state-of-the-art deep learning methods, including FNO, U-NO, U-FNO, Vision Transformer, CNN-RNN, and CNN-LSTM, to demonstrate its accuracy, computational efficiency, and scalability. Furthermore, physics analysis from domain experts is also performed to demonstrate the reliability of GL-FNO. The results demonstrate that GL-FNO not only accelerates the MHD simulation (a few seconds for prediction, more than \times 20,000 speed up) but also provides reliable prediction capabilities, thus greatly contributing to the understanding of space weather dynamics. Our code implementation is available at https://github.com/Yutao-0718/GL-FNO
- Abstract(参考訳): 太陽の外大気を探索することは、様々な太陽の事象に大きく影響を及ぼす複雑な磁場の形成を考えると、天体物理学において重要なボトルネックとなっている。
磁気流体力学(MHD)シミュレーションにより、太陽のプラズマ、磁場、周囲の環境の間の複雑な相互作用をモデル化することができる。
しかし、MHDシミュレーションは非常に時間がかかり、シミュレーションには数日や数週間を要する。
本研究の目的は、深層学習、特にフーリエニューラル演算子(FNO)を用いたコロナ磁場シミュレーションを高速化することである。
FNOは、科学計算と文献発見のための理想的なツールであることが証明されている。
本稿では,FNOの2つの分岐を含むグローバルローカルフーリエニューラル演算子(GL-FNO)を提案する。
GLFNOの性能は、FNO、U-NO、U-FNO、Vision Transformer、CNN-RNN、CNN-LSTMといった最先端のディープラーニング手法と比較され、その精度、計算効率、スケーラビリティを示す。
さらに, GL-FNOの信頼性を示すために, 領域の専門家による物理解析を行った。
その結果、GL-FNOはMHDシミュレーションを加速するだけでなく、信頼性の高い予測能力も提供し、宇宙気象力学の理解に大きく貢献することが示された。
私たちのコード実装はhttps://github.com/Yutao-0718/GL-FNOで利用可能です。
関連論文リスト
- Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration [5.77922305904338]
データ駆動機械学習を用いた代理モデリングは、物理学に基づくシミュレーションを加速する上で有望な代替手段となっている。
我々は、FNOの表現性と深層演算ネットワーク(DeepONet)のモジュラリティを組み合わせることにより、ネストしたフーリエ・ディープONetを開発した。
この新しいフレームワークは、トレーニング用のネストされたFNOの2倍効率が高く、少なくとも80%低いGPUメモリを必要とする。
論文 参考訳(メタデータ) (2024-09-25T02:58:45Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
ニューラル演算子学習の最近の進歩にインスパイアされた機械学習(ML)モデルであるU-AFNO(Adaptive Fourier Neural Operators)を提案する。
U-AFNOを使って、現在の時間ステップでフィールドを後の時間ステップにマッピングするダイナミクスを学習します。
高忠実度数値解法と同等の精度で重要なミクロ構造統計とQoIを再現する。
論文 参考訳(メタデータ) (2024-06-24T20:13:23Z) - Multiple-Input Fourier Neural Operator (MIFNO) for source-dependent 3D elastodynamics [0.0]
この研究は、材料特性を表す構造化3Dフィールドを扱うためのMultiple-Input Fourier Neural Operator (MIFNO)を導入している。
MIFNOは、地球の地殻における弾性波伝搬の問題に適用される。
HEMEWS-3Dデータベース上で, 異種領域の地震シミュレーションを30万回行った。
論文 参考訳(メタデータ) (2024-04-15T20:07:44Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - U-FNO -- an enhanced Fourier neural operator based-deep learning model
for multiphase flow [43.572675744374415]
多相フロー問題を解くための拡張フーリエニューラル演算子U-FNOを提案する。
U-FNOアーキテクチャは従来のCNNとオリジナルFNOの両方の利点があり、より正確で効率的な性能を提供する。
訓練されたU-FNOは、従来の数値シミュレータと比較して1万倍の速度でガス飽和と圧力上昇を予測する。
論文 参考訳(メタデータ) (2021-09-03T17:52:25Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。