論文の概要: Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration
- arxiv url: http://arxiv.org/abs/2409.16572v1
- Date: Wed, 25 Sep 2024 02:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 05:55:22.566631
- Title: Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration
- Title(参考訳): 3次元地質炭素採取のための効率よく一般化可能なFourier-DeepONet
- Authors: Jonathan E. Lee, Min Zhu, Ziqiao Xi, Kun Wang, Yanhua O. Yuan, Lu Lu,
- Abstract要約: データ駆動機械学習を用いた代理モデリングは、物理学に基づくシミュレーションを加速する上で有望な代替手段となっている。
我々は、FNOの表現性と深層演算ネットワーク(DeepONet)のモジュラリティを組み合わせることにより、ネストしたフーリエ・ディープONetを開発した。
この新しいフレームワークは、トレーニング用のネストされたFNOの2倍効率が高く、少なくとも80%低いGPUメモリを必要とする。
- 参考スコア(独自算出の注目度): 5.77922305904338
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Geological carbon sequestration (GCS) involves injecting CO$_2$ into subsurface geological formations for permanent storage. Numerical simulations could guide decisions in GCS projects by predicting CO$_2$ migration pathways and the pressure distribution in storage formation. However, these simulations are often computationally expensive due to highly coupled physics and large spatial-temporal simulation domains. Surrogate modeling with data-driven machine learning has become a promising alternative to accelerate physics-based simulations. Among these, the Fourier neural operator (FNO) has been applied to three-dimensional synthetic subsurface models. Here, to further improve performance, we have developed a nested Fourier-DeepONet by combining the expressiveness of the FNO with the modularity of a deep operator network (DeepONet). This new framework is twice as efficient as a nested FNO for training and has at least 80% lower GPU memory requirement due to its flexibility to treat temporal coordinates separately. These performance improvements are achieved without compromising prediction accuracy. In addition, the generalization and extrapolation ability of nested Fourier-DeepONet beyond the training range has been thoroughly evaluated. Nested Fourier-DeepONet outperformed the nested FNO for extrapolation in time with more than 50% reduced error. It also exhibited good extrapolation accuracy beyond the training range in terms of reservoir properties, number of wells, and injection rate.
- Abstract(参考訳): 地質炭素沈降(GCS)は、永久保存のためにCO$2$を地下の地質層に注入する。
数値シミュレーションにより,GCSプロジェクトにおけるCO$2$マイグレーション経路と貯蔵時の圧力分布を予測して決定を導出することができる。
しかし、これらのシミュレーションは高結合物理学と大きな時空間シミュレーション領域のために計算コストがかかることが多い。
データ駆動機械学習を用いた代理モデリングは、物理学に基づくシミュレーションを加速する上で有望な代替手段となっている。
これらのうち、フーリエ神経作用素(FNO)は三次元合成地下モデルに応用されている。
そこで我々は,FNOの表現性とDeepONet(DeepONet)のモジュール性を組み合わせたネストしたFourier-DeepONetを開発した。
この新しいフレームワークは、トレーニング用のネストされたFNOの2倍効率が高く、時間座標を別々に扱う柔軟性のため、GPUメモリ要件が少なくとも80%低い。
これらの性能改善は予測精度を損なうことなく達成される。
さらに,営巣したFourier-DeepONetのトレーニング範囲を越えた一般化と外挿能力の評価を行った。
Nested Fourier-DeepONetは、50%以上のエラーで、ネストされたFNOを外挿でパフォーマンスした。
また, 貯水池特性, 井戸数, 注入速度に関して, トレーニング範囲を超えて良好な外挿精度を示した。
関連論文リスト
- Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
本稿では、数値データや実験データによるデータ駆動事前学習と、ハミルトン駆動最適化の第2段階を含む、ニューラル量子状態(NQS)のハイブリッド最適化手法を提案する。
我々の研究は、ニューラル量子状態の信頼性と効率的な最適化の道を開いた。
論文 参考訳(メタデータ) (2024-05-31T17:55:27Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration [3.3058870667947646]
多孔質媒質中の多相流は、GCSに付随する表面におけるCO$$マイグレーションと圧力場を理解するために不可欠である。
本稿では,多孔質媒体における多相流問題の解演算子を学習するために,フーリエ強化多入力ニューラル演算子(フーリエ・ミオネット)を開発した。
改良されたFNO (U-FNO) と比較して、提案されたフーリエ・ミオネトは未知のパラメータが90%少なく、非常に少ない時間で訓練できる。
論文 参考訳(メタデータ) (2023-03-08T18:20:56Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。