Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
- URL: http://arxiv.org/abs/2405.12802v1
- Date: Tue, 21 May 2024 13:53:58 GMT
- Title: Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
- Authors: Igor Kavrakov, Gledson Rodrigo Tondo, Guido Morgenthal,
- Abstract summary: We propose an inference methodology for classical Kirchhoff-Love plates via physics-informed Gaussian Processes (GP)
A probabilistic model is formulated as a multi-output GP by placing a GP prior on the deflection and deriving the covariance function using the linear differential operators of the plate governing equations.
We demonstrate the applicability with two examples: a supported plate subjected to a sinusoidal load and a fixed plate subjected to a uniform load.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advancements in machine learning and an abundance of structural monitoring data have inspired the integration of mechanical models with probabilistic models to identify a structure's state and quantify the uncertainty of its physical parameters and response. In this paper, we propose an inference methodology for classical Kirchhoff-Love plates via physics-informed Gaussian Processes (GP). A probabilistic model is formulated as a multi-output GP by placing a GP prior on the deflection and deriving the covariance function using the linear differential operators of the plate governing equations. The posteriors of the flexural rigidity, hyperparameters, and plate response are inferred in a Bayesian manner using Markov chain Monte Carlo (MCMC) sampling from noisy measurements. We demonstrate the applicability with two examples: a simply supported plate subjected to a sinusoidal load and a fixed plate subjected to a uniform load. The results illustrate how the proposed methodology can be employed to perform stochastic inference for plate rigidity and physical quantities by integrating measurements from various sensor types and qualities. Potential applications of the presented methodology are in structural health monitoring and uncertainty quantification of plate-like structures.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Conditional score-based diffusion models for solving inverse problems in mechanics [6.319616423658121]
We propose a framework to perform Bayesian inference using conditional score-based diffusion models.
Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution.
We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics.
arXiv Detail & Related papers (2024-06-19T02:09:15Z) - Applications of flow models to the generation of correlated lattice QCD ensembles [69.18453821764075]
Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters.
This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables.
arXiv Detail & Related papers (2024-01-19T18:33:52Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Stochastic stiffness identification and response estimation of
Timoshenko beams via physics-informed Gaussian processes [0.0]
This paper presents a physics-informed Gaussian process (GP) model for Timoshenko beam elements.
The proposed approach is effective at identifying structural parameters and is capable of fusing data from heterogeneous and multi-fidelity sensors.
arXiv Detail & Related papers (2023-09-21T08:22:12Z) - Physics-informed Gaussian process model for Euler-Bernoulli beam
elements [0.0]
A physics-informed machine learning model is formulated using the Euler-Bernoulli beam equation.
The model can be used to regress the analytical value of the structure's bending stiffness, interpolate responses, and make probabilistic inferences on latent physical quantities.
arXiv Detail & Related papers (2023-08-05T14:48:37Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Bayesian Calibration of imperfect computer models using Physics-informed
priors [0.0]
We introduce a computational efficient data-driven framework suitable for quantifying the uncertainty in physical parameters of computer models.
We extend this into a fully Bayesian framework which allows quantifying the uncertainty of physical parameters and model predictions.
This work is motivated by the need for interpretable parameters for the hemodynamics of the heart for personal treatment of hypertension.
arXiv Detail & Related papers (2022-01-17T15:16:26Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.