Genuine $k$-partite correlations and entanglement in the ground state of the Dicke model for interacting qubits
- URL: http://arxiv.org/abs/2405.12916v1
- Date: Tue, 21 May 2024 16:38:20 GMT
- Title: Genuine $k$-partite correlations and entanglement in the ground state of the Dicke model for interacting qubits
- Authors: Antônio C. Lourenço, Denis R. Candido, Eduardo I. Duzzioni,
- Abstract summary: We use Genuine Multipartite Correlations (GMC) of the Dicke model with interacting qubits to quantify correlations.
We employ Quantum Fisher Information (QFI) to detect genuine multipartite entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of correlations among subsystems is essential for both the understanding of critical phenomena and for performing quantum information tasks. However, the majority of correlation measures are restricted to bipartitions due to the inherent challenges associated with handling multiple partitions and subsystems. To address this, we investigate Genuine Multipartite Correlations (GMC) of the Dicke model with interacting qubits. This method allows for the precise quantification of correlations within each subpart of the system, as well as for the percentage contribution of each GMC of order $k$. Most importantly, we show that GMC signal both first- and second-order quantum phase transitions present in the model. Furthermore, we employ Quantum Fisher Information (QFI) to detect genuine multipartite entanglement, since the GMC encompass both classical and quantum correlations. Ultimately, we compare the Dicke model with interacting qubits to spin-centers in solids interacting with a quantum field of magnons to demonstrate a potential experimental realization of this generalized Dicke model.
Related papers
- Measuring multipartite quantum correlations by thermodynamic work extraction [0.0]
We introduce a measure of multipartite quantum correlations based on the difference in extractable thermodynamic work by global operations and local operations and classical communication.
A distinguishing feature of the thermodynamic approach to multipartite quantum correlation is that we can compare the degree of quantum correlations with clear operational meaning.
This shows that the multipartite work deficit does not only highlight the fundamental connection between multipartite quantum correlations and quantum thermodynamics, but also serves as an efficiently-computable probe of the structures of quantum many-body systems.
arXiv Detail & Related papers (2024-07-04T16:58:30Z) - Quantum chaos in the Dicke model and its variants [0.0]
We calculate the out-of-time-ordered correlator (OTOC) for different variations of the Dicke model in an open quantum system setting.
This becomes important for the experimental studies of the OTOC and quantum chaos in the models of quantum optics.
arXiv Detail & Related papers (2023-05-24T18:53:33Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Finite-size criticality in fully connected spin models on
superconducting quantum hardware [0.0]
We exploit the new resources offered by quantum algorithms to detect the quantum critical behaviour of fully connected spin$-1/2$ models.
We propose a method based on variational algorithms run on superconducting transmon qubits.
arXiv Detail & Related papers (2022-08-04T16:00:34Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Multipartite correlations in quantum collision models [0.0]
A challenge in the standard collision model is how to describe quantum correlations among ancillas induced by successive system-ancilla interactions.
Here we develop a tensor network formalism to address both challenges.
In the case of the initially correlated ancillas, we construct a general tensor diagram for the system dynamics and derive a memory- kernel master equation.
arXiv Detail & Related papers (2022-04-05T17:06:27Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.