論文の概要: A K-means Algorithm for Financial Market Risk Forecasting
- arxiv url: http://arxiv.org/abs/2405.13076v1
- Date: Tue, 21 May 2024 02:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 04:22:11.880886
- Title: A K-means Algorithm for Financial Market Risk Forecasting
- Title(参考訳): 金融市場リスク予測のためのK平均アルゴリズム
- Authors: Jinxin Xu, Kaixian Xu, Yue Wang, Qinyan Shen, Ruisi Li,
- Abstract要約: 機械学習におけるK平均アルゴリズムは、金融市場にとって効果的なリスク予測手法である。
K平均アルゴリズムはユーザフレンドリーな単純さで動作し、94.61%の精度を達成する。
- 参考スコア(独自算出の注目度): 3.4490908169211942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate
- Abstract(参考訳): 金融市場のリスク予測には、将来の市場の動きが投資に与える影響を推定するために数学的モデル、歴史的データ分析、統計手法を適用することが含まれる。
このプロセスは、投資家が戦略を策定し、金融機関が資産を管理し、規制当局が政策を策定する上で不可欠である。
今日の社会では、金融市場リスク予測の精度に大きな影響を及ぼす、高いエラー率と低い精度の問題がある。
機械学習におけるK平均アルゴリズムは、金融市場にとって効果的なリスク予測手法である。
本研究では、K平均アルゴリズムを用いて金融市場リスク予測システムを構築し、金融市場リスク予測の精度と効率を大幅に向上させる。
最終的に実験の結果、K平均アルゴリズムがユーザフレンドリーな単純さで動作し、94.61%の精度を達成することを確認した。
関連論文リスト
- Predicting Liquidity Coverage Ratio with Gated Recurrent Units: A Deep Learning Model for Risk Management [5.864973298916232]
本稿では、金融機関が流動性リスクをより効果的に管理できるように、ゲートリカレントユニット(GRU)ネットワークに基づく流動性カバレッジ比(LCR)予測モデルを提案する。
ディープラーニング技術におけるGRUネットワークを利用することで、モデルは過去のデータから複雑なパターンを自動的に学習し、将来しばらくの間LCRを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-24T23:43:50Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
既存の予測アプローチの多くは、効果的な意思決定に必要な深さを欠いて、単一ポイントの予測に焦点を当てている。
本稿では,不確実性をより効果的に定量化するために,ストック間隔予測のためのシーケンス生成を導入するRAGICを提案する。
RAGICのジェネレータには、情報投資家のリスク認識をキャプチャするリスクモジュールと、歴史的価格動向と季節性を考慮した時間モジュールが含まれている。
論文 参考訳(メタデータ) (2024-02-16T15:34:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Identifying Trades Using Technical Analysis and ML/DL Models [1.181206257787103]
株式市場の価格予測の重要性は過大評価できない。
投資家は投資決定をインフォームドし、リスクを管理し、金融システムの安定性を確保することができる。
ディープラーニングは株価を正確に予測する上で有望だが、まだ多くの研究が続けられている。
論文 参考訳(メタデータ) (2023-04-12T18:46:35Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
署名された注文フローに対して,注文フローの不均衡の増加に伴い,価格への影響は線形に増大することを示す。
さらに,注文フローにサインされた市場への影響を予測するために,機械学習アルゴリズムを実装した。
この結果から,機械学習モデルを用いて財務変数を推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-17T14:58:29Z) - Financial Market Trend Forecasting and Performance Analysis Using LSTM [0.0]
LSTMを用いた金融市場トレンド予測手法を提案し、実験を通して既存の金融市場トレンド予測手法を用いて性能を解析する。
本稿では,既存の金融市場トレンド予測モデルの性能と,金融市場環境に応じたパフォーマンスを実験的に比較する。
論文 参考訳(メタデータ) (2020-03-31T01:30:36Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。