論文の概要: The Role of Emotions in Informational Support Question-Response Pairs in Online Health Communities: A Multimodal Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2405.13099v1
- Date: Tue, 21 May 2024 15:15:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 04:12:17.819075
- Title: The Role of Emotions in Informational Support Question-Response Pairs in Online Health Communities: A Multimodal Deep Learning Approach
- Title(参考訳): オンライン健康コミュニティにおける情報支援質問応答ペアにおける感情の役割 : マルチモーダルディープラーニングアプローチ
- Authors: Mohsen Jozani, Jason A. Williams, Ahmed Aleroud, Sarbottam Bhagat,
- Abstract要約: 本研究は,オンライン・ヘルス・コミュニティにおいて,質問・回答・助力評価を求める情報支援の関連について検討した。
我々は、質問応答対のラベル付きデータセットを作成し、情報支援質問や回答を確実に予測するマルチモーダル機械学習とディープラーニングモデルを開発した。
我々は、情報支援交換に埋め込まれた感情を明らかにするために説明可能なAIを使用し、情報支援の提供における感情の重要性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the relationship between informational support seeking questions, responses, and helpfulness ratings in online health communities. We created a labeled data set of question-response pairs and developed multimodal machine learning and deep learning models to reliably predict informational support questions and responses. We employed explainable AI to reveal the emotions embedded in informational support exchanges, demonstrating the importance of emotion in providing informational support. This complex interplay between emotional and informational support has not been previously researched. The study refines social support theory and lays the groundwork for the development of user decision aids. Further implications are discussed.
- Abstract(参考訳): 本研究は,オンライン・ヘルス・コミュニティにおいて,質問・回答・助力評価を求める情報支援の関連について検討した。
我々は、質問応答対のラベル付きデータセットを作成し、情報支援質問や回答を確実に予測するマルチモーダル機械学習とディープラーニングモデルを開発した。
我々は、情報支援交換に埋め込まれた感情を明らかにするために説明可能なAIを使用し、情報支援の提供における感情の重要性を実証した。
この感情的支援と情報的支援の複雑な相互作用は、これまで研究されていない。
この研究は、社会支援理論を洗練させ、ユーザ意思決定支援の開発の基礎を築き上げている。
さらなる意味について論じる。
関連論文リスト
- How to Engage Your Readers? Generating Guiding Questions to Promote Active Reading [60.19226384241482]
教科書や科学論文から10Kのインテキスト質問のデータセットであるGuidingQを紹介した。
言語モデルを用いてこのような質問を生成するための様々なアプローチを探索する。
我々は、そのような質問が読解に与える影響を理解するために、人間の研究を行う。
論文 参考訳(メタデータ) (2024-07-19T13:42:56Z) - Dynamic Demonstration Retrieval and Cognitive Understanding for Emotional Support Conversation [35.49338831485202]
ESCにおける2つの重要な課題は、文脈的関連性および共感的応答生成の促進と認知的理解の促進である。
私たちの仕事は、ESCで提供されるサポートの品質を改善するためにこれらの要素を相乗化するための新しいアプローチです。
私たちのコードは、さらなる研究と開発を促進するために、パブリックアクセスが可能です。
論文 参考訳(メタデータ) (2024-04-03T06:47:15Z) - Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap [4.2330023661329355]
本研究は、説明生成とプレゼンテーションに関連する複雑さについて論じるものである。
私たちのロードマップは、責任ある研究とイノベーションの原則によって支えられています。
これらの研究の方向性を探ることで、説明可能なAVの開発と展開の指針となる。
論文 参考訳(メタデータ) (2024-03-19T11:43:41Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Reasoning with Language Model Prompting: A Survey [86.96133788869092]
推論は複雑な問題解決に不可欠な能力であり、様々な現実世界のアプリケーションに対するバックエンドサポートを提供することができる。
本稿では,言語モデルによる推論に関する最先端の研究を包括的に調査する。
論文 参考訳(メタデータ) (2022-12-19T16:32:42Z) - Exploring the Effects of AI-assisted Emotional Support Processes in
Online Mental Health Community [26.36961585672868]
我々は、ユーザーが他のユーザーの投稿に感情的なサポートメッセージを書けるように、AIを駆使したワークフローを設計する。
予備的なユーザスタディに基づいて,本システムは,感情の明確化とテキストの具体的記述を支援することを確認した。
論文 参考訳(メタデータ) (2022-02-21T09:25:36Z) - Understanding the Information Needs and Practices of Human Supporters of
an Online Mental Health Intervention to Inform Machine Learning Applications [6.5893732458797185]
この研究は、AIと機械学習(ML)の分野における最近の進歩を通じて得られる新たな機会が、iCBTサポーターの作業プラクティスを効果的に支援するための有用なデータ洞察にどのように貢献するかを調査する。
本報告では、既存の作業実践や情報ニーズの理解を深める15人のiCBTサポーターとのインタビュー研究の成果を詳述する。
本分析は,(1)iCBT支援者がメンタルヘルスクライアントに対して効果的かつパーソナライズされたフィードバックを提供する際に直面する戦略と課題をまとめた6つのテーマ,(2)MLの手法が特定の課題や情報ニーズをいかに支援し,対処するかを示す具体的機会について提示する。
論文 参考訳(メタデータ) (2021-11-12T11:43:31Z) - Exploring Self-Identified Counseling Expertise in Online Support Forums [26.086207762353336]
本研究は, 他者との相互作用と, 自己識別型精神保健専門家との相互作用の差異について検討する。
我々の研究は、医療専門家がソーシャルネットワークで健康情報や支援をどう扱うかを理解するための開発努力に貢献する。
論文 参考訳(メタデータ) (2021-06-24T12:53:07Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
本稿では,感情支援会話タスクを定義し,ヘルピングスキル理論に基づくESCフレームワークを提案する。
本研究では,豊かなアノテーション(特にサポート戦略)をヘルプシーカとサポーターモードで組み込んだ感情支援会話データセット(ESConv)を構築した。
情緒的サポートを提供する能力に関して、最先端の対話モデルを評価する。
論文 参考訳(メタデータ) (2021-06-02T13:30:43Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。