論文の概要: Enhancing Interaction Modeling with Agent Selection and Physical Methods for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2405.13152v1
- Date: Tue, 21 May 2024 18:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:13:10.859153
- Title: Enhancing Interaction Modeling with Agent Selection and Physical Methods for Trajectory Prediction
- Title(参考訳): 軌道予測のためのエージェント選択と物理手法による相互作用モデリングの強化
- Authors: Shiji Huang, Lei Ye, Min Chen, Wenhai Luo, Chenqi Xu, Deyuan Liang, Dihong Wang,
- Abstract要約: ASPILinは、現在の車線と将来の車線を考慮し、相互作用するエージェントの選択を強化する新しいアプローチである。
我々の手法は効率的で単純で、他の最先端の手法よりも優れています。
- 参考スコア(独自算出の注目度): 1.6954753390775528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we address the limitations inherent in most existing vehicle trajectory prediction methodologies that indiscriminately incorporate all agents within a predetermined proximity when accounting for inter-agent interactions. These approaches commonly employ attention-based architecture or graph neural networks for encoding interactions, which introduces three challenges: (i) The indiscriminate selection of all nearby agents substantially escalates the computational demands of the model, particularly in those interaction-rich scenarios. (ii) Moreover, the simplistic feature extraction of current time agents falls short of adequately capturing the nuanced dynamics of interactions. (iii) Compounded by the inherently low interpretability of attention mechanism and graph neural networks, there is a propensity for the model to allocate unreliable correlation coefficients to certain agents, adversely impacting the accuracy of trajectory predictions. To mitigate these issues, we introduce ASPILin, a novel approach that enhances the selection of interacting agents by considering their current and future lanes, extending this consideration across all historical frames. Utilizing the states of the agents, we estimate the nearest future distance between agents and the time needed to reach this distance. Then, combine these with their current distances to derive a physical correlation coefficient to encode interactions. Experiments conducted on popular trajectory prediction datasets demonstrate that our method is efficient and straightforward, outperforming other state-of-the-art methods.
- Abstract(参考訳): 本研究では、エージェント間相互作用を考慮した場合、すべてのエージェントを所定の近傍に無差別に組み込む、既存の車両軌道予測手法に固有の制約について検討する。
これらのアプローチは一般的に、インタラクションを符号化するために注意ベースのアーキテクチャまたはグラフニューラルネットワークを使用します。
(i) 近接エージェントの無差別選択は、特に相互作用に富むシナリオにおいて、モデルの計算要求を大幅に増大させる。
(二)現在の時間的エージェントの簡易的特徴抽出は、相互作用のニュアンスなダイナミクスを適切に捉えるには不十分である。
三 注意機構及びグラフニューラルネットワークの本質的に低い解釈可能性により、あるエージェントに信頼できない相関係数を割り当て、軌道予測の精度に悪影響を及ぼす確率がある。
これらの問題を緩和するために, ASPILinを導入し, インタラクションエージェントの選択を現在の車線と将来の車線を考慮し, 全ての歴史的フレームにまたがって拡張する手法を提案する。
エージェントの状態を利用して、エージェント間の最も近い将来距離と、この距離に到達するのに必要な時間とを推定する。
次に、これらを現在の距離と組み合わせて、相互作用を符号化する物理的相関係数を導出する。
一般的な軌道予測データセットを用いて行った実験は、我々の手法が効率的で簡単であり、他の最先端の手法よりも優れていることを示した。
関連論文リスト
- Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
提案手法は,軌道予測器が将来の状態を生成するために使用する関係の進化を捉えるために,動的に進化する関係グラフとハイパーグラフを推論する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.817322497343503]
トラジェクティブ予測のためのインタラクションモデリングを強化するために,プリテキストタスクを提案するSSL-Interactionsを提案する。
エージェントインタラクションの様々な側面をカプセル化する4つの対話対応プレテキストタスクを導入する。
また,データセットからインタラクション重大シナリオをキュレートする手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:43:40Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Leveraging Future Relationship Reasoning for Vehicle Trajectory
Prediction [27.614778027454417]
本稿では,車線情報を用いてエージェント間の将来の関係を予測する手法を提案する。
エージェントの粗い将来の動きを得るため,まず車線レベルのウェイポイント占有確率を予測した。
次に,各エージェントペアに対して隣接車線を通過させる時間的確率を利用して,隣接車線を通過するエージェントが高度に相互作用すると仮定する。
論文 参考訳(メタデータ) (2023-05-24T04:33:28Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
我々は,時間的全変動に基づくマルチエージェントインタラクションの注意モデルを構築した。
我々は,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより,予測精度の面で示す。
論文 参考訳(メタデータ) (2022-03-08T21:54:28Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。