論文の概要: Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2405.13152v2
- Date: Fri, 11 Oct 2024 19:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:04:20.808761
- Title: Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction
- Title(参考訳): 軌道予測のためのエージェント選択と物理係数による相互作用モデリングの強化
- Authors: Shiji Huang, Lei Ye, Min Chen, Wenhai Luo, Chenqi Xu, Deyuan Liang, Dihong Wang,
- Abstract要約: 本稿では,インタラクションエージェントを手動で選択し,アテンションスコアの代わりに相関関係を計算するASPILinを提案する。
興味深いことに、InterACTION、HighD、CitySimデータセットで実施された実験は、我々の手法が効率的かつ簡単であることを実証している。
- 参考スコア(独自算出の注目度): 1.6954753390775528
- License:
- Abstract: A thorough understanding of the interaction between the target agent and surrounding agents is a prerequisite for accurate trajectory prediction. Although many methods have been explored, they all assign correlation coefficients to surrounding agents in a purely learning-based manner. In this study, we present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores. Surprisingly, these simple modifications can significantly improve prediction performance and substantially reduce computational costs. Additionally, ASPILin models the interacting agents at each past time step separately, rather than only modeling the interacting agents at the current time step. This clarifies the causal chain of the target agent's historical trajectory and helps the model better understand dynamic interactions. We intentionally simplified our model in other aspects, such as map encoding. Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward, outperforming other state-of-the-art methods.
- Abstract(参考訳): ターゲットエージェントと周辺エージェントとの相互作用の徹底的な理解は、正確な軌道予測の前提条件である。
多くの手法が研究されているが、それらはすべて純粋に学習的な方法で周囲のエージェントに相関係数を割り当てている。
本研究では,インタラクションエージェントを手動で選択し,アテンションスコアの代わりに相関関係を計算するASPILinを提案する。
驚くべきことに、これらの単純な修正は予測性能を大幅に改善し、計算コストを大幅に削減することができる。
さらに、ASPILinは、インタラクションエージェントを現在のステップでモデル化するだけでなく、過去のステップごとにインタラクションエージェントを別々にモデル化する。
このことは、対象エージェントの歴史的軌道の因果連鎖を明らかにし、モデルが動的相互作用をよりよく理解するのに役立つ。
マップエンコーディングなど,他の面でのモデルを意図的に単純化しました。
興味深いことに、InterAction、HighD、CitySimデータセットで実施された実験は、我々の手法が効率的で簡単であり、他の最先端手法よりも優れていることを示した。
関連論文リスト
- SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
トラジェクティブ予測のためのインタラクションモデリングを強化するために,プリテキストタスクを提案するSSL-Interactionsを提案する。
エージェントインタラクションの様々な側面をカプセル化する4つの対話対応プレテキストタスクを導入する。
また,データセットからインタラクション重大シナリオをキュレートする手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:43:40Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - JFP: Joint Future Prediction with Interactive Multi-Agent Modeling for
Autonomous Driving [12.460224193998362]
構造化されたグラフィカルモデルの定式化において,エージェント同士の相互作用を直接学習するエンド・ツー・エンドのトレーニング可能なモデルを提案する。
提案手法は,単エージェントトラジェクタのトラジェクタとトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタのトラジェクタの性能を向上する。
論文 参考訳(メタデータ) (2022-12-16T20:59:21Z) - SMEMO: Social Memory for Trajectory Forecasting [34.542209630734234]
本稿では、外部記憶装置として機能するエンドツーエンドのトレーニング可能なワーキングメモリに基づくニューラルネットワークを提案する。
提案手法は,異なるエージェントの動き間の説明可能な因果関係を学習し,軌跡予測データセットの最先端結果を得ることができることを示す。
論文 参考訳(メタデータ) (2022-03-23T14:40:20Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
我々は,時間的全変動に基づくマルチエージェントインタラクションの注意モデルを構築した。
我々は,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより,予測精度の面で示す。
論文 参考訳(メタデータ) (2022-03-08T21:54:28Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。