論文の概要: Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems
- arxiv url: http://arxiv.org/abs/2405.13362v4
- Date: Sat, 29 Mar 2025 14:45:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:30:24.176771
- Title: Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems
- Title(参考訳): Lusifer:オンラインレコメンダシステムのためのLLMベースのユーザシミュレートフィードバック環境
- Authors: Danial Ebrat, Eli Paradalis, Luis Rueda,
- Abstract要約: 強化学習(RL)レコメンデータシステムは、現実のシナリオにおけるユーザの好みの性質を変えることなく、流体をキャプチャできない静的データセットに依存することが多い。
LLMベースのシミュレーション環境であるLulsiferを導入し、RLベースのレコメンデータトレーニングのための動的で現実的なユーザフィードバックを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reinforcement learning (RL) recommender systems often rely on static datasets that fail to capture the fluid, ever changing nature of user preferences in real-world scenarios. Meanwhile, generative AI techniques have emerged as powerful tools for creating synthetic data, including user profiles and behaviors. Recognizing this potential, we introduce Lusifer, an LLM-based simulation environment designed to generate dynamic, realistic user feedback for RL-based recommender training. In Lusifer, user profiles are incrementally updated at each interaction step, with Large Language Models (LLMs) providing transparent explanations of how and why preferences evolve. We focus on the MovieLens dataset, extracting only the last 40 interactions for each user, to emphasize recent behavior. By processing textual metadata (such as movie overviews and tags) Lusifer creates more context aware user states and simulates feedback on new items, including those with limited or no prior ratings. This approach reduces reliance on extensive historical data and facilitates cold start scenario handling and adaptation to out of distribution cases. Our experiments compare Lusifer with traditional collaborative filtering models, revealing that while Lusifer can be comparable in predictive accuracy, it excels at capturing dynamic user responses and yielding explainable results at every step. These qualities highlight its potential as a scalable, ethically sound alternative to live user experiments, supporting iterative and user-centric evaluations of RL-based recommender strategies. Looking ahead, we envision Lusifer serving as a foundational tool for exploring generative AI-driven user simulations, enabling more adaptive and personalized recommendation pipelines under real world constraints.
- Abstract(参考訳): 強化学習(RL)レコメンデータシステムは、現実のシナリオにおけるユーザの好みの性質を変えることなく、流体をキャプチャできない静的データセットに依存することが多い。
一方、生成AI技術は、ユーザープロファイルや行動を含む合成データを作成するための強力なツールとして登場した。
この可能性を認識したLusiferは,RLベースのレコメンデータトレーニングのための動的で現実的なユーザフィードバックを生成するLLMベースのシミュレーション環境である。
Lusiferでは、ユーザープロファイルは各インタラクションステップで漸進的に更新される。
ユーザ毎の最後の40のインタラクションのみを抽出して,最近の振る舞いを強調する,MovieLensデータセットに注目する。
テキストメタデータ(映画の概要やタグなど)を処理することで、Lulsiferはよりコンテキストを意識したユーザ状態を生成し、事前のレーティングが限定的であるか、全くないものを含む、新しいアイテムに対するフィードバックをシミュレートする。
このアプローチは、広範な履歴データへの依存を減らし、コールドスタートシナリオのハンドリングと分散ケース外への適応を容易にする。
我々の実験では,Lugiferと従来の協調フィルタリングモデルを比較し,Lugiferは予測精度に匹敵するものの,動的なユーザ応答をキャプチャし,各ステップで説明可能な結果を得ることができることを明らかにした。
これらの性質は、ライブユーザー実験に代わるスケーラブルで倫理的に健全な代替手段としての可能性を強調し、RLベースのレコメンデータ戦略の反復的およびユーザ中心の評価をサポートする。
今後は、Lulsiferが生成AI駆動のユーザシミュレーションを探索するための基本的なツールとして機能し、現実の制約の下でより適応的でパーソナライズされたレコメンデーションパイプラインを可能にすることを期待しています。
関連論文リスト
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
本稿では,従来のインタラクションからユーザフィードバックを学習する対話型パーソナライズドビジュアライゼーションレコメンデーション(PVisRec)システムを提案する。
よりインタラクティブで正確なレコメンデーションのために、PVisRec設定における文脈的半帯域であるHier-SUCBを提案する。
論文 参考訳(メタデータ) (2025-02-05T17:14:45Z) - LLM-Powered User Simulator for Recommender System [29.328839982869923]
LLMを利用したユーザシミュレータを導入し、アイテムとのユーザエンゲージメントを明示的にシミュレートする。
具体的には、ユーザ嗜好の明示的なロジックを特定し、LCMを活用してアイテムの特性を分析し、ユーザ感情を抽出する。
本稿では,ユーザインタラクションシミュレーションの論理的および統計的洞察を相乗化するアンサンブルモデルを提案する。
論文 参考訳(メタデータ) (2024-12-22T12:00:04Z) - LIBER: Lifelong User Behavior Modeling Based on Large Language Models [42.045535303737694]
大規模言語モデルに基づく生涯ユーザ行動モデリング(LIBER)を提案する。
LIBERはHuaweiの音楽レコメンデーションサービスにデプロイされ、ユーザーの再生回数と再生時間の3.01%と7.69%を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-22T03:43:41Z) - Reformulating Conversational Recommender Systems as Tri-Phase Offline Policy Learning [5.453444582931813]
Tri-Phase Offline Policy Learning-based Conversational Recommender System (TCRS)
本稿では,Tri-Phase Offline Policy Learning-based Conversational Recommender System (TCRS)を紹介する。
論文 参考訳(メタデータ) (2024-08-13T10:58:29Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - A LLM-based Controllable, Scalable, Human-Involved User Simulator Framework for Conversational Recommender Systems [14.646529557978512]
Conversational Recommender System (CRS) はユーザからのリアルタイムフィードバックを利用して好みを動的にモデル化する。
LLM(Large Language Models)は、計算能力の新たな時代を迎えている。
ユーザシミュレータの動作を管理するCSHI(Controlable, scalable, and human-Involved)シミュレータフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-13T03:02:56Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
テールユーザに注力することで、より多くのメリットをもたらし、長いテールの問題に対処できる、と私たちは主張しています。
具体的には、頭部から尾部への知識伝達を容易にするために、勾配アライメントを提案し、敵のトレーニングスキームを採用する。
論文 参考訳(メタデータ) (2020-10-22T03:12:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。