論文の概要: NFCL: Simply interpretable neural networks for a short-term multivariate forecasting
- arxiv url: http://arxiv.org/abs/2405.13393v1
- Date: Wed, 22 May 2024 07:08:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 01:04:57.075603
- Title: NFCL: Simply interpretable neural networks for a short-term multivariate forecasting
- Title(参考訳): NFCL:短期多変量予測のための単純な解釈可能なニューラルネットワーク
- Authors: Wonkeun Jo, Dongil Kim,
- Abstract要約: 提案モデルであるNFCL(Neural ForeCasting Layer)では,ニューラルネットワークの直接アマルガメーションを採用している。
本稿では、NFCLと、その多様な拡張について紹介する。9つのベンチマークモデルと比較して、NFCLの優れた性能を実証的に評価する。
- 参考スコア(独自算出の注目度): 9.115927248875568
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time-series forecasting (MTSF) stands as a compelling field within the machine learning community. Diverse neural network based methodologies deployed in MTSF applications have demonstrated commendable efficacy. Despite the advancements in model performance, comprehending the rationale behind the model's behavior remains an enigma. Our proposed model, the Neural ForeCasting Layer (NFCL), employs a straightforward amalgamation of neural networks. This uncomplicated integration ensures that each neural network contributes inputs and predictions independently, devoid of interference from other inputs. Consequently, our model facilitates a transparent explication of forecast results. This paper introduces NFCL along with its diverse extensions. Empirical findings underscore NFCL's superior performance compared to nine benchmark models across 15 available open datasets. Notably, NFCL not only surpasses competitors but also provides elucidation for its predictions. In addition, Rigorous experimentation involving diverse model structures bolsters the justification of NFCL's unique configuration.
- Abstract(参考訳): 多変量時系列予測(MTSF)は、機械学習コミュニティにおいて魅力的な分野である。
MTSFアプリケーションにデプロイされた様々なニューラルネットワークに基づく手法は、可換性を示す。
モデル性能の進歩にもかかわらず、モデルの振る舞いの背後にある理論的根拠を理解することは謎のままである。
提案するモデルであるNural ForeCasting Layer (NFCL) では,ニューラルネットワークの直接アマルガメーションを採用している。
この複雑でない統合は、各ニューラルネットワークが他の入力からの干渉を伴わず、独立して入力と予測に寄与することを保証します。
その結果,このモデルにより予測結果の透過的な説明が容易となった。
本稿ではNFCLとその拡張について紹介する。
NFCLの優れたパフォーマンスを、利用可能な15のオープンデータセットにわたる9つのベンチマークモデルと比較すると、実証的な結果が裏付けている。
特に、NFCLはライバルを上回るだけでなく、その予測の解明も提供する。
さらに、多様なモデル構造を含む厳密な実験により、NFCLのユニークな構成の正当化が促進される。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Variational Inference on the Final-Layer Output of Neural Networks [3.146069168382982]
本稿では、最終層出力空間(VIFO)における変分推論を行うことにより、両方のアプローチの利点を組み合わせることを提案する。
ニューラルネットワークを用いて確率出力の平均と分散を学習する。
実験により、VIFOは、特に分布データ外において、実行時間と不確実性定量化の観点から良いトレードオフを提供することが示された。
論文 参考訳(メタデータ) (2023-02-05T16:19:01Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
我々は、データのスムーズさを保ちながら不変な新しいタイプのニューラルネットワークを導入する:関数型ニューラルネットワーク(FNN)
そこで我々は,多層パーセプトロンと畳み込みニューラルネットワークを機能データに拡張するために,機能データ分析(FDA)の手法を用いる。
脳波(EEG)データの分類にFNNをうまく利用し,FDAのベンチマークモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-14T09:41:21Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks [6.389882065284252]
本稿では,異種局所モデルのニューロン同士が相互に干渉するニューロン乱れ現象を明らかにする。
本稿では,ニューラルネットワークの乱れを排除し,AMSと呼ばれる局所モデルを適応的に選択して予測を行う実験手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T06:47:48Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - Linear Iterative Feature Embedding: An Ensemble Framework for
Interpretable Model [6.383006473302968]
線形反復特徴埋め込み(LIFE)と呼ばれる解釈可能なモデルのための新しいアンサンブルフレームワークを開発した。
LIFEは、広い一層ニューラルネットワーク(NN)を正確に3つのステップに適合させることができる。
LIFEは直接訓練された単層NNを一貫して上回り、また他の多くのベンチマークモデルより上です。
論文 参考訳(メタデータ) (2021-03-18T02:01:17Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
我々は、予測性能とモデル解釈可能性の両目標を達成するために、Adaptive Explainable Neural Networks (AxNN) と呼ばれる新しいフレームワークを開発した。
予測性能向上のために,一般化された付加的モデルネットワークと付加的インデックスモデルからなる構造化ニューラルネットワークを構築した。
本稿では,AxNNの結果を主効果と高次相互作用効果に分解する方法を示す。
論文 参考訳(メタデータ) (2020-04-05T23:40:57Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。