論文の概要: Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks
- arxiv url: http://arxiv.org/abs/2210.12974v2
- Date: Sun, 29 Oct 2023 02:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 01:29:28.338096
- Title: Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks
- Title(参考訳): 不均一ニューラルネットワークを用いたニューロン障害の研究
- Authors: Biao Zhang, and Shuqin Zhang
- Abstract要約: 本稿では,異種局所モデルのニューロン同士が相互に干渉するニューロン乱れ現象を明らかにする。
本稿では,ニューラルネットワークの乱れを排除し,AMSと呼ばれる局所モデルを適応的に選択して予測を行う実験手法を提案する。
- 参考スコア(独自算出の注目度): 6.389882065284252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fusing deep learning models trained on separately located clients into a
global model in a one-shot communication round is a straightforward
implementation of Federated Learning. Although current model fusion methods are
shown experimentally valid in fusing neural networks with almost identical
architectures, they are rarely theoretically analyzed. In this paper, we reveal
the phenomenon of neuron disturbing, where neurons from heterogeneous local
models interfere with each other mutually. We give detailed explanations from a
Bayesian viewpoint combining the data heterogeneity among clients and
properties of neural networks. Furthermore, to validate our findings, we
propose an experimental method that excludes neuron disturbing and fuses neural
networks via adaptively selecting a local model, called AMS, to execute the
prediction according to the input. The experiments demonstrate that AMS is more
robust in data heterogeneity than general model fusion and ensemble methods.
This implies the necessity of considering neural disturbing in model fusion.
Besides, AMS is available for fusing models with varying architectures as an
experimental algorithm, and we also list several possible extensions of AMS for
future work.
- Abstract(参考訳): 個別に配置されたクライアントでトレーニングされたディープラーニングモデルをワンショットのコミュニケーションラウンドでグローバルモデルに融合させることは、フェデレートラーニングの簡単な実装である。
現在のモデル融合法は、ほぼ同一のアーキテクチャを持つニューラルネットワークを融合するのに実験的に有効であるが、理論的に解析されることは滅多にない。
本稿では,異種局所モデルのニューロン同士が相互に干渉するニューロン乱れ現象を明らかにする。
本稿では、クライアント間のデータ不均一性とニューラルネットワークの特性を組み合わせたベイズ的視点による詳細な説明を行う。
さらに,神経障害を排除し,入力に応じて局所モデルであるamsを適応的に選択することでニューラルネットワークを融合させる実験手法を提案する。
実験により、AMSは一般モデル融合法やアンサンブル法よりもデータ不均一性において堅牢であることが示された。
これはモデル融合における神経障害を考える必要性を意味する。
加えて、amsは様々なアーキテクチャを実験的なアルゴリズムとして融合するモデルとして利用可能であり、将来の作業のためにいくつかのamsの拡張もリストアップしている。
関連論文リスト
- Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
我々は、データのスムーズさを保ちながら不変な新しいタイプのニューラルネットワークを導入する:関数型ニューラルネットワーク(FNN)
そこで我々は,多層パーセプトロンと畳み込みニューラルネットワークを機能データに拡張するために,機能データ分析(FDA)の手法を用いる。
脳波(EEG)データの分類にFNNをうまく利用し,FDAのベンチマークモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-14T09:41:21Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
システム神経科学は、単一ニューロンのチューニング曲線と集団活動の分析を特徴とする2つの相補的な神経データ観に依存している。
これらの2つの視点は、潜伏変数とニューラルアクティビティの関係を制約するニューラル潜伏変数モデルにおいてエレガントに結合する。
ニューラルチューニング曲線にまたがる機能共有を提案し、性能を大幅に改善し、より良い最適化を実現する。
論文 参考訳(メタデータ) (2022-10-06T18:37:49Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Fully differentiable model discovery [0.0]
ニューラルネットワークに基づくサロゲートとスパースベイズ学習を組み合わせたアプローチを提案する。
我々の研究は、PINNを様々なタイプのニューラルネットワークアーキテクチャに拡張し、ニューラルネットワークベースのサロゲートをベイズパラメータ推論のリッチフィールドに接続する。
論文 参考訳(メタデータ) (2021-06-09T08:11:23Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Probabilistic Federated Learning of Neural Networks Incorporated with
Global Posterior Information [4.067903810030317]
フェデレートラーニングでは、ローカルクライアントで訓練されたモデルをグローバルモデルに蒸留する。
本稿では,確率的フェデレーションニューラルネットワークの拡張手法を提案する。
我々の新しい手法は、単一のコミュニケーションラウンドと追加のコミュニケーションラウンドの両方において、一般的な最先端のフェデレーション学習方法より優れています。
論文 参考訳(メタデータ) (2020-12-06T03:54:58Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。