論文の概要: On Hardware-efficient Inference in Probabilistic Circuits
- arxiv url: http://arxiv.org/abs/2405.13639v1
- Date: Wed, 22 May 2024 13:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:54:52.876026
- Title: On Hardware-efficient Inference in Probabilistic Circuits
- Title(参考訳): 確率回路におけるハードウェア効率の推論について
- Authors: Lingyun Yao, Martin Trapp, Jelin Leslin, Gaurav Singh, Peng Zhang, Karthekeyan Periasamy, Martin Andraud,
- Abstract要約: 本研究は,PC用専用近似計算フレームワークを提案する。
我々はAddition As Intを活用し、単純なハードウェア要素による線形PC計算を実現した。
理論的近似誤差解析と誤り補償機構を提案する。
- 参考スコア(独自算出の注目度): 5.335146727090435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Probabilistic circuits (PCs) offer a promising avenue to perform embedded reasoning under uncertainty. They support efficient and exact computation of various probabilistic inference tasks by design. Hence, hardware-efficient computation of PCs is highly interesting for edge computing applications. As computations in PCs are based on arithmetic with probability values, they are typically performed in the log domain to avoid underflow. Unfortunately, performing the log operation on hardware is costly. Hence, prior work has focused on computations in the linear domain, resulting in high resolution and energy requirements. This work proposes the first dedicated approximate computing framework for PCs that allows for low-resolution logarithm computations. We leverage Addition As Int, resulting in linear PC computation with simple hardware elements. Further, we provide a theoretical approximation error analysis and present an error compensation mechanism. Empirically, our method obtains up to 357x and 649x energy reduction on custom hardware for evidence and MAP queries respectively with little or no computational error.
- Abstract(参考訳): 確率回路(PC)は、不確実性の下で組込み推論を行うための有望な道を提供する。
それらは設計による様々な確率的推論タスクの効率的かつ正確な計算をサポートする。
したがって、PCのハードウェア効率の計算はエッジコンピューティングアプリケーションにとって非常に興味深い。
PCの計算は確率値の算術に基づいており、一般的にはアンダーフローを避けるためにログ領域で実行される。
残念ながら、ハードウェア上でログ操作を実行するのはコストがかかる。
したがって、以前の研究は線形領域での計算に重点を置いており、結果として高分解能とエネルギー要求が生じる。
本研究は,低分解能対数計算が可能なPC用専用近似計算フレームワークを提案する。
我々はAddition As Intを活用し、単純なハードウェア要素による線形PC計算を実現した。
さらに,理論的な近似誤差解析を行い,誤差補償機構を提案する。
提案手法は,エビデンスとMAPクエリに対して,それぞれ357倍,649倍のエネルギー削減を実現している。
関連論文リスト
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Solving Boltzmann Optimization Problems with Deep Learning [0.21485350418225244]
Isingモデルは、高エネルギー効率計算のための将来のフレームワークとして、特に有望であることを示している。
イジングシステムは、計算のエネルギー消費に対する熱力学的限界に近づくエネルギーで操作することができる。
Isingベースのハードウェアを作成する際の課題は、基本的な非決定論的ハードウェア上で正しい結果を生成する有用な回路を最適化することである。
論文 参考訳(メタデータ) (2024-01-30T19:52:02Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Efficient Computation of Counterfactual Bounds [44.4263314637532]
我々は,構造因果モデルのサブクラスにおけるクレダルネットのアルゴリズムを用いて,正確な反ファクト境界を計算する。
近似の精度を信頼性のある間隔で評価する。
論文 参考訳(メタデータ) (2023-07-17T07:59:47Z) - A full-stack view of probabilistic computing with p-bits: devices,
architectures and algorithms [0.014319921806060482]
pビットを用いた確率計算のフルスタックレビューを提供する。
pビットはエネルギー効率のよい確率システムを構築するのに使用できると我々は主張する。
我々は、機械学習からAIまで、確率的コンピュータの主な応用について概説する。
論文 参考訳(メタデータ) (2023-02-13T15:36:07Z) - Bias-Scalable Near-Memory CMOS Analog Processor for Machine Learning [6.548257506132353]
バイアススケーリング可能な近似アナログコンピューティングは、異なる性能仕様の機械学習(ML)プロセッサを実装する上で魅力的である。
本稿では、マージン・プロパゲーションの原理を一般化したバイアス計算可能な近似アナログ演算回路の実装を実証する。
論文 参考訳(メタデータ) (2022-02-10T13:26:00Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
本稿では,ストラグラー効果に対処する代替手法として,Berrut Approximated Coded Computing (BACC)を提案する。
BACCは計算複雑性が低い数値的に安定であることが証明されている。
特に、BACCは、サーバのクラスタ上でディープニューラルネットワークをトレーニングするために使用される。
論文 参考訳(メタデータ) (2020-09-17T14:23:38Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
我々は,PC用の新しい実装設計であるEinsum Networks (EiNets)を提案する。
中心となるのは、E EiNets は単一のモノリシックな einsum-operation に多数の算術演算を組み合わせている。
本稿では,PCにおける予測最大化(EM)の実装を,自動微分を利用した簡易化が可能であることを示す。
論文 参考訳(メタデータ) (2020-04-13T23:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。