論文の概要: VAE-Var: Variational-Autoencoder-Enhanced Variational Assimilation
- arxiv url: http://arxiv.org/abs/2405.13711v1
- Date: Wed, 22 May 2024 15:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:45:08.018744
- Title: VAE-Var: Variational-Autoencoder-Enhanced Variational Assimilation
- Title(参考訳): VAE-Var: 変分オートエンコーダによる変分同化
- Authors: Yi Xiao, Qilong Jia, Wei Xue, Lei Bai,
- Abstract要約: 本稿では,背景誤差分布の非ガウス推定をモデル化するために,変分オートエンコーダを利用する新しい変分アルゴリズムであるVAE-Varを紹介する。
VAE-Varは、様々な観測環境における精度において、従来の変分同化法よりも一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 22.50340615234394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data assimilation refers to a set of algorithms designed to compute the optimal estimate of a system's state by refining the prior prediction (known as background states) using observed data. Variational assimilation methods rely on the maximum likelihood approach to formulate a variational cost, with the optimal state estimate derived by minimizing this cost. Although traditional variational methods have achieved great success and have been widely used in many numerical weather prediction centers, they generally assume Gaussian errors in the background states, which limits the accuracy of these algorithms due to the inherent inaccuracies of this assumption. In this paper, we introduce VAE-Var, a novel variational algorithm that leverages a variational autoencoder (VAE) to model a non-Gaussian estimate of the background error distribution. We theoretically derive the variational cost under the VAE estimation and present the general formulation of VAE-Var; we implement VAE-Var on low-dimensional chaotic systems and demonstrate through experimental results that VAE-Var consistently outperforms traditional variational assimilation methods in terms of accuracy across various observational settings.
- Abstract(参考訳): データ同化(Data assimilation)とは、観測データを用いて事前の予測(バックグラウンド状態)を精算することにより、システムの状態を最適に推定するアルゴリズムである。
変分同化法は、このコストを最小化することによって導かれる最適状態推定を用いて、変動コストを定式化するための最大極大アプローチに依存する。
従来の変分法は大きな成功を収め、多くの数値的な天気予報センターで広く用いられているが、一般的には背景状態のガウス誤差を仮定し、この仮定の固有の不正確さのためにこれらのアルゴリズムの精度を制限している。
本稿では,変分オートエンコーダ(VAE)を利用して,背景誤差分布の非ガウス推定をモデル化する新しい変分アルゴリズムであるVAE-Varを紹介する。
VAE-Var を低次元カオスシステムに実装し,VAE-Var が従来の変分同化法を様々な観測条件の精度で一貫して上回っていることを示す実験結果により,VAE-Var の変動コストを理論的に導出した。
関連論文リスト
- Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
実験問題のA-最適ベイズ設計における計算効率について検討する。
A-最適性はベイズの実験設計に広く用いられ、容易に解釈できる基準である。
本研究は, A-Optimal 実験設計における新しい可能性のないアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:40:43Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
GPモデルの推論は、セミアモタイズ法よりもはるかに高速な1つのフィードフォワードパスによって行われる。
提案手法は,複数のベンチマークデータセットの最先端データよりも高い確率でテストデータが得られることを示す。
論文 参考訳(メタデータ) (2021-02-05T13:01:12Z) - Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
Variance Parameterization [3.553493344868413]
本稿では,予測平均と分散キャリブレーションを検証し,予測分布が有意義なデータを生成する能力を評価するための批評を提案する。
ヘテロセダスティックな分散を多変量に処理するためには、これらのPPCを通過させるために分散を十分に規則化する必要がある。
論文 参考訳(メタデータ) (2020-06-08T19:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。