論文の概要: AI, Climate, and Regulation: From Data Centers to the AI Act
- arxiv url: http://arxiv.org/abs/2410.06681v1
- Date: Wed, 9 Oct 2024 08:43:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:19:50.091133
- Title: AI, Climate, and Regulation: From Data Centers to the AI Act
- Title(参考訳): AI、気候、規制 - データセンターからAI法まで
- Authors: Kai Ebert, Nicolas Alder, Ralf Herbrich, Philipp Hacker,
- Abstract要約: 我々は、特にデータセンターとAIの気候関連規制に関するガイダンスを提供することを目標としている。
我々は、AIの推論から、これまで未解決であったエネルギー消費の報告を、その範囲に戻すために、AI法の具体的な解釈を提案する。
我々は、環境問題を含むAI法を強制リスクアセスメントに解釈することを主張する。
- 参考スコア(独自算出の注目度): 2.874893537471256
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We live in a world that is experiencing an unprecedented boom of AI applications that increasingly penetrate and enhance all sectors of private and public life, from education, media, medicine, and mobility to the industrial and professional workspace, and -- potentially particularly consequentially -- robotics. As this world is simultaneously grappling with climate change, the climate and environmental implications of the development and use of AI have become an important subject of public and academic debate. In this paper, we aim to provide guidance on the climate-related regulation for data centers and AI specifically, and discuss how to operationalize these requirements. We also highlight challenges and room for improvement, and make a number of policy proposals to this end. In particular, we propose a specific interpretation of the AI Act to bring reporting on the previously unadressed energy consumption from AI inferences back into the scope. We also find that the AI Act fails to address indirect greenhouse gas emissions from AI applications. Furthermore, for the purpose of energy consumption reporting, we compare levels of measurement within data centers and recommend measurement at the cumulative server level. We also argue for an interpretation of the AI Act that includes environmental concerns in the mandatory risk assessment (sustainability risk assessment, SIA), and provide guidance on its operationalization. The EU data center regulation proves to be a good first step but requires further development by including binding renewable energy and efficiency targets for data centers. Overall, we make twelve concrete policy proposals, in four main areas: Energy and Environmental Reporting Obligations; Legal and Regulatory Clarifications; Transparency and Accountability Mechanisms; and Future Far-Reaching Measures beyond Transparency.
- Abstract(参考訳): 私たちは、教育、メディア、医療、モビリティから産業や専門的な仕事場、そしてロボット工学に至るまで、民間と公共の生活のあらゆる分野に浸透し、強化する、AIアプリケーションの前例のないブームを経験している世界に住んでいます。
この世界は同時に気候変動に悩まされているため、AIの開発と利用の気候と環境への影響は、公的な、学術的な議論の主題となっている。
本稿では、特にデータセンターとAIの気候関連規制に関するガイダンスを提供し、これらの要件の運用方法について論じる。
私たちはまた、課題と改善の余地を強調し、この目的のためにいくつかのポリシー提案を行います。
特に、AI法を具体的に解釈し、これまで未解決であったAI推論からのエネルギー消費の報告を範囲に戻すことを提案する。
また、AI法は、AIアプリケーションからの間接的な温室効果ガス排出に対処できないこともわかりました。
さらに, エネルギー消費報告のために, データセンター内の計測レベルを比較し, 累積サーバレベルでの測定を推奨する。
また、環境問題を含む環境問題を含むAI法(サステナビリティリスクアセスメント、SIA)の解釈と、その運用に関するガイダンスについても論じる。
EUのデータセンター規制は、良い第一歩であることを証明していますが、データセンターの再生可能エネルギーと効率目標を結びつけることで、さらなる開発が必要です。
総じて、エネルギー・環境報告義務、法・規制の明確化、透明性・説明責任メカニズム、透明性を超える将来的遠方改善対策の4つの分野において、12の具体的な政策案を策定する。
関連論文リスト
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
この議論の多くは、大きな間接効果に対処することなく直接的影響に集中している。
本稿では,Jevonsのパラドックス問題がどのようにAIに適用され,効率向上がパラドックス的に消費増加を促すかを検討する。
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - AI, Climate, and Transparency: Operationalizing and Improving the AI Act [2.874893537471256]
本稿では、気候関連透明性に関するAI法の規定を批判的に検討する。
AI推論におけるエネルギー消費の排除を含む、重要な欠点を特定します。
本稿では,提案法の範囲内での推論関連エネルギー利用を復活させる新しい解釈を提案する。
論文 参考訳(メタデータ) (2024-08-28T07:57:39Z) - Responsible AI for Earth Observation [10.380878519901998]
私たちはAIとEOの交差点を体系的に定義し、責任あるAIプラクティスに重点を置いています。
学術と産業の両面からこの探究を導く重要な要素をいくつか挙げる。
本稿は、今後の研究成果に価値ある洞察を提供するとともに、今後の可能性と新たなトレンドを探求する。
論文 参考訳(メタデータ) (2024-05-31T14:47:27Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:19:35Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
論文 参考訳(メタデータ) (2024-04-25T21:14:24Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
国際機関が国際気候協定の遵守を保証できない。
RICE-NはAIエージェントを使用した地域意思決定のモデリングをサポートする。
IAMは、これらの決定の気候・経済的な影響を未来にモデル化する。
論文 参考訳(メタデータ) (2023-07-10T20:05:42Z) - Sustainable AI Regulation [3.0821115746307663]
ICT部門は温室効果ガス排出量の3.9%を占める。
AIの炭素フットプリント水消費量、特にGPT-4のような大規模生成モデルは、持続可能性に関する重大な懸念を提起している。
この論文は、持続可能なAI規制を実現するための多面的アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-01T02:20:48Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。