論文の概要: BrainMorph: A Foundational Keypoint Model for Robust and Flexible Brain MRI Registration
- arxiv url: http://arxiv.org/abs/2405.14019v1
- Date: Wed, 22 May 2024 21:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:54:29.248924
- Title: BrainMorph: A Foundational Keypoint Model for Robust and Flexible Brain MRI Registration
- Title(参考訳): BrainMorph: ロバストでフレキシブルな脳MRI登録のための基礎的キーポイントモデル
- Authors: Alan Q. Wang, Rachit Saluja, Heejong Kim, Xinzi He, Adrian Dalca, Mert R. Sabuncu,
- Abstract要約: 本稿では,最近提案されたKeyMorphフレームワークに基づく汎用脳MRI登録のためのキーポイントベース基礎モデルを提案する。
BrainMorphと呼ばれる私たちのモデルは、マルチモーダル、ペアワイド、スケーラブルなグループワイド登録をサポートするツールとして機能します。
BrainMorphは、頭蓋骨と非頭蓋骨の巨大なデータセットで訓練されている。
- 参考スコア(独自算出の注目度): 5.924229540777053
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a keypoint-based foundation model for general purpose brain MRI registration, based on the recently-proposed KeyMorph framework. Our model, called BrainMorph, serves as a tool that supports multi-modal, pairwise, and scalable groupwise registration. BrainMorph is trained on a massive dataset of over 100,000 3D volumes, skull-stripped and non-skull-stripped, from nearly 16,000 unique healthy and diseased subjects. BrainMorph is robust to large misalignments, interpretable via interrogating automatically-extracted keypoints, and enables rapid and controllable generation of many plausible transformations with different alignment types and different degrees of nonlinearity at test-time. We demonstrate the superiority of BrainMorph in solving 3D rigid, affine, and nonlinear registration on a variety of multi-modal brain MRI scans of healthy and diseased subjects, in both the pairwise and groupwise setting. In particular, we show registration accuracy and speeds that surpass current state-of-the-art methods, especially in the context of large initial misalignments and large group settings. All code and models are available at https://github.com/alanqrwang/brainmorph.
- Abstract(参考訳): 本稿では,最近提案されたKeyMorphフレームワークに基づく汎用脳MRI登録のためのキーポイントベース基礎モデルを提案する。
BrainMorphと呼ばれる私たちのモデルは、マルチモーダル、ペアワイド、スケーラブルなグループワイド登録をサポートするツールとして機能します。
BrainMorphは、頭蓋骨と非頭蓋骨の巨大なデータセットで訓練されている。
BrainMorphは、大きなミスアライメントに対して堅牢であり、自動的に抽出されたキーポイントを問うことによって解釈可能であり、異なるアライメントタイプと異なる非線形性の異なる多くの可算変換を、迅速かつ制御可能な生成を可能にする。
健常者および疾患者の脳MRIにおける3次元剛性,アフィン,非線形登録の解法におけるBrainMorphの優位性について検討した。
特に,現在最先端の手法を超越した登録精度と速度を示す。
すべてのコードとモデルはhttps://github.com/alanqrwang/brainmorph.comで入手できる。
関連論文リスト
- BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - UMBRAE: Unified Multimodal Brain Decoding [43.6339793925953]
脳信号のマルチモーダルデコードであるUMBRAEを提案する。
マルチモーダル脳アライメントのための効率的なユニバーサル脳エンコーダを提案する。
また,対象物固有の特徴を共通の特徴空間にマッピングするクロスオブジェクトトレーニング戦略も導入する。
論文 参考訳(メタデータ) (2024-04-10T17:59:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Retinotopy Inspired Brain Encoding Model and the All-for-One Training
Recipe [14.943061215875655]
3つの画像モダリティにまたがる5つの公開データセットから100万以上のデータポイントを用いて、脳エンコーディングモデルを事前訓練した。
本稿では、一般的に使用される視覚バックボーンモデルのドロップイン置換として、事前学習モデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-26T08:06:40Z) - Connectional-Style-Guided Contextual Representation Learning for Brain
Disease Diagnosis [12.172262618438173]
本研究では,脳の固有パターンを捉えるために,接続型文脈表現学習モデル(CS-CRL)を提案する。
CS-CRLは6つのデータセットと3つの疾患にまたがる複数の脳疾患診断タスクにおいて優れた精度を達成する。
論文 参考訳(メタデータ) (2023-06-08T15:39:27Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。