論文の概要: Knowledge-Based Learning of Nonlinear Dynamics and Chaos
- arxiv url: http://arxiv.org/abs/2010.03415v4
- Date: Thu, 2 Dec 2021 15:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 00:24:44.970055
- Title: Knowledge-Based Learning of Nonlinear Dynamics and Chaos
- Title(参考訳): 非線形ダイナミクスとカオスの知識に基づく学習
- Authors: Tom Z. Jiahao, M. Ani Hsieh, Eric Forgoston
- Abstract要約: 本稿では,非線形システムから観測結果に基づいて予測モデルを抽出するための普遍的な学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を容易に組み込むことができる。
- 参考スコア(独自算出の注目度): 3.673994921516517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting predictive models from nonlinear systems is a central task in
scientific machine learning. One key problem is the reconciliation between
modern data-driven approaches and first principles. Despite rapid advances in
machine learning techniques, embedding domain knowledge into data-driven models
remains a challenge. In this work, we present a universal learning framework
for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it
naturally models nonlinear systems as continuous-time systems. This both
improves the extracted models' extrapolation power and reduces the amount of
data needed for training. In addition, our framework has the advantages of
robustness to observational noise and applicability to irregularly sampled
data. We demonstrate the effectiveness of our scheme by learning predictive
models for a wide variety of systems including a stiff Van der Pol oscillator,
the Lorenz system, and the Kuramoto-Sivashinsky equation. For the Lorenz
system, different types of domain knowledge are incorporated to demonstrate the
strength of knowledge embedding in data-driven system identification.
- Abstract(参考訳): 非線形システムから予測モデルを抽出することは、科学的機械学習の中心的なタスクである。
鍵となる問題は、現代的なデータ駆動アプローチと最初の原則の和解だ。
機械学習技術の急速な進歩にもかかわらず、データ駆動モデルにドメイン知識を埋め込むことは依然として課題である。
本稿では,非線形システムから観測に基づいて予測モデルを抽出するための普遍学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を組み込むことができる。
これにより、抽出されたモデルの補間能力が向上し、トレーニングに必要なデータ量が削減される。
さらに,本フレームワークは,観測ノイズに対するロバスト性,不規則サンプルデータの適用性といった利点がある。
本稿では, 剛体ファンデルポル発振器, ローレンツ系, 倉本-シヴァシンスキー方程式を含む多種多様な系の予測モデルを学習することにより, 提案手法の有効性を実証する。
Lorenzシステムでは、データ駆動システム識別に埋め込まれた知識の強さを示すために、さまざまな種類のドメイン知識が組み込まれている。
関連論文リスト
- Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control [22.549914935697366]
カーネル埋め込みを用いたデータ駆動制御アルゴリズムに事前知識を組み込む手法を提案する。
提案手法は,カーネル学習問題におけるバイアス項として,システムダイナミクスの事前知識を取り入れたものである。
純粋にデータ駆動ベースライン上でのサンプル効率の向上と,我々のアプローチのアウト・オブ・サンプル一般化を実証する。
論文 参考訳(メタデータ) (2023-01-09T18:35:32Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
本稿では,複雑な時間的挙動を示すシステムに対して,不適切にモデル化された力学を克服するためのデータ駆動型モデリング戦略を提案する。
本稿では,システムの真の力学と,不正確あるいは不適切に記述されたシステムのモデルによって与えられる力学の相違を解決するためのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-23T04:57:02Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。