Diffusion-based Quantum Error Mitigation using Stochastic Differential Equation
- URL: http://arxiv.org/abs/2405.14283v1
- Date: Thu, 23 May 2024 07:59:26 GMT
- Title: Diffusion-based Quantum Error Mitigation using Stochastic Differential Equation
- Authors: Joo Yong Shim, Joongheon Kim,
- Abstract summary: The random fluctuations that arise due to the interaction with the external environment cause noise affecting the states of the quantum system, resulting in system errors.
This paper introduces a novel approach to mitigate errors using diffusion models.
This approach can be realized by noise occurrence formulation during the state evolution as forward-backward differential equations (FBSDE) and adapting the score-based generative model (SGM) to denoise errors in quantum states.
- Score: 9.913187216180424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike closed systems, where the total energy and information are conserved within the system, open systems interact with the external environment which often leads to complex behaviors not seen in closed systems. The random fluctuations that arise due to the interaction with the external environment cause noise affecting the states of the quantum system, resulting in system errors. To effectively concern quantum error in open quantum systems, this paper introduces a novel approach to mitigate errors using diffusion models. This approach can be realized by noise occurrence formulation during the state evolution as forward-backward stochastic differential equations (FBSDE) and adapting the score-based generative model (SGM) to denoise errors in quantum states.
Related papers
- Unified analysis of non-Markovian open quantum systems in Gaussian environment using superoperator formalism [4.504072151606679]
We present perturbative error bounds for the non-Markovian dynamics of observables in open quantum systems.
This extends the work of [Mascherpa et al., Phys. Rev. Lett. 118, 100401, 2017], which demonstrated qualitatively tighter bounds over the standard Gr"onwall-type analysis.
arXiv Detail & Related papers (2024-11-13T16:19:32Z) - Temporally correlated quantum noise in driven quantum systems [0.0]
We develop a quantum master equation for driven systems weakly coupled to quantum environments.
Our method makes it possible to track all occurring decay channels and their time-dependent generalized rates.
We also demonstrate that correlated and field-dependent dissipative effects can lead to an increase in the performance of single-qubit gate operations.
arXiv Detail & Related papers (2024-10-24T13:54:37Z) - Observing Time-Dependent Energy Level Renormalisation in an Ultrastrongly Coupled Open System [37.69303106863453]
We show how strong coupling and memory effects influence the energy levels of open quantum systems.
Measurements reveal a time-dependent shift in the system's energy levels of up to 15% of the bare system frequency.
Our findings provide direct evidence of dynamic energy level renormalisation in strongly coupled open quantum systems.
arXiv Detail & Related papers (2024-08-28T16:40:55Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Open quantum system in the indefinite environment [13.979213066536394]
In this paper, we investigate the interference engineering of the open quantum system.
The environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits.
arXiv Detail & Related papers (2023-07-13T07:52:48Z) - Decoherence Limits the Cost to Simulate an Anharmonic Oscillator [0.0]
We study how decoherence washes out the fine-grained subPlanck structure associated with phase-space quantum interference in a quantum system.
Open quantum dynamics can be more efficiently simulated using a coarse-grained finite-difference numerical integration.
We show that this regression does not have the form of a convex noise model, such as for a depolarizing noise channel.
arXiv Detail & Related papers (2023-07-03T04:49:10Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Operator Growth in Open Quantum Systems [0.4351216340655199]
We provide a universal framework that describes the scrambling of quantum information in open systems.
We show that open quantum systems exhibit universal classes of information dynamics that fundamentally differ from their unitary counterparts.
arXiv Detail & Related papers (2022-08-25T18:00:00Z) - Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system [0.0]
We develop a theoretical framework in terms of the time-dependent Schrodinger equation of motion.
The link between the peaked structure of the effective decay rate of the qubit that interacts indirectly with the environment, and the onset of the quantum Zeno effect is discussed in great detail.
Our treatment and results have revealed an intricate interplay between non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics.
arXiv Detail & Related papers (2022-06-28T09:28:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.