論文の概要: Bracket Diffusion: HDR Image Generation by Consistent LDR Denoising
- arxiv url: http://arxiv.org/abs/2405.14304v2
- Date: Tue, 18 Mar 2025 14:54:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:11:20.005330
- Title: Bracket Diffusion: HDR Image Generation by Consistent LDR Denoising
- Title(参考訳): ブラケット拡散:一貫性LDRデノイングによるHDR画像生成
- Authors: Mojtaba Bemana, Thomas Leimkühler, Karol Myszkowski, Hans-Peter Seidel, Tobias Ritschel,
- Abstract要約: 複数のブラックボックス, 事前学習されたLDR画像拡散モデルの協調動作を用いたHDR画像の生成を実演する。
有効なHDR結果を生成する複数のLDRブラケットを生成するために,複数の復調処理を運用する。
現状未条件および条件回復型(LDR2)生成モデルの結果は,まだHDRでは示されていない。
- 参考スコア(独自算出の注目度): 29.45922922270381
- License:
- Abstract: We demonstrate generating HDR images using the concerted action of multiple black-box, pre-trained LDR image diffusion models. Relying on a pre-trained LDR generative diffusion models is vital as, first, there is no sufficiently large HDR image dataset available to re-train them, and, second, even if it was, re-training such models is impossible for most compute budgets. Instead, we seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "exposure brackets'', to produce a single HDR image. We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result. The key to making this work is to introduce a consistency term into the diffusion process to couple the brackets such that they agree across the exposure range they share while accounting for possible differences due to the quantization error. We demonstrate state-of-the-art unconditional and conditional or restoration-type (LDR2HDR) generative modeling results, yet in HDR.
- Abstract(参考訳): 複数のブラックボックス, 事前学習されたLDR画像拡散モデルの協調動作を用いたHDR画像の生成を実演する。
事前学習されたLDR生成拡散モデルに頼ることは、第一に、それらを再学習するのに十分な大きなHDR画像データセットが存在しないこと、第二に、たとえそうであったとしても、そのようなモデルを再学習することは、ほとんどの計算予算では不可能である。
代わりに我々は、伝統的に「露光ブラケット」と呼ばれるLDR画像の集合を融合させて単一のHDR画像を生成するHDR画像キャプチャー文献からインスピレーションを得る。
有効なHDR結果を生成する複数のLDRブラケットを生成するために,複数の復調処理を運用する。
この研究の鍵となるのは、拡散過程に一貫性項を導入してブラケットを結合させ、それらが共有する露光範囲にわたって一致し、量子化誤差による相違を考慮に入れることである。
現状の非条件型・条件型・復元型(LDR2HDR)生成モデルの結果は,まだHDRでは示されていない。
関連論文リスト
- LEDiff: Latent Exposure Diffusion for HDR Generation [11.669442066168244]
LEDiffは、遅延空間露光融合技術により、HDRコンテンツを生成する生成モデルを実現する方法である。
また、LDR-to-fusionコンバータとしても機能し、既存の低ダイナミックレンジ画像のダイナミックレンジを拡張する。
論文 参考訳(メタデータ) (2024-12-19T02:15:55Z) - Diffusion-Promoted HDR Video Reconstruction [45.73396977607666]
高ダイナミックレンジ(LDR)ビデオ再構成は、低ダイナミックレンジ(LDR)フレームから交互に露出したHDRビデオを生成することを目的としている。
既存の作品の多くは回帰に基づくパラダイムにのみ依存しており、ゴーストのアーティファクトや飽和した地域での詳細の欠如といった悪影響につながっている。
本稿では,HDR-V-Diffと呼ばれるHDR映像再構成のための拡散促進手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T13:38:10Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
高品質なHDR結果を生成するためにアライメントと露出の不確かさをモデル化する新しいHDRイメージング技術を提案する。
本研究では,HDRを意識した不確実性を考慮したアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・
実験結果から,本手法は最先端の高画質HDR画像を最大0.8dBPSNRで生成できることがわかった。
論文 参考訳(メタデータ) (2022-01-07T14:27:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
我々は,単発hdr再構成フレームワークに物理的照度制約を導入する。
本手法は,視覚に訴えるだけでなく,物理的に妥当なHDRを生成することができる。
論文 参考訳(メタデータ) (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。