論文の概要: SpGesture: Source-Free Domain-adaptive sEMG-based Gesture Recognition with Jaccard Attentive Spiking Neural Network
- arxiv url: http://arxiv.org/abs/2405.14398v1
- Date: Thu, 23 May 2024 10:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:44:17.576716
- Title: SpGesture: Source-Free Domain-adaptive sEMG-based Gesture Recognition with Jaccard Attentive Spiking Neural Network
- Title(参考訳): SpGesture: Jaccard Attentive Spiking Neural Networkを用いたソースフリードメイン適応sEMGに基づくジェスチャー認識
- Authors: Weiyu Guo, Ying Sun, Yijie Xu, Ziyue Qiao, Yongkui Yang, Hui Xiong,
- Abstract要約: 表面筋電図(sEMG)に基づくジェスチャー認識は、ウェアラブルデバイスに対して自然な、直感的な相互作用のモダリティを提供する。
既存の手法は、しばしば高い計算遅延とエネルギー消費の増大に悩まされる。
スパイキングニューラルネットワークに基づく新しいSpGestureフレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.954398018873682
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surface electromyography (sEMG) based gesture recognition offers a natural and intuitive interaction modality for wearable devices. Despite significant advancements in sEMG-based gesture-recognition models, existing methods often suffer from high computational latency and increased energy consumption. Additionally, the inherent instability of sEMG signals, combined with their sensitivity to distribution shifts in real-world settings, compromises model robustness. To tackle these challenges, we propose a novel SpGesture framework based on Spiking Neural Networks, which possesses several unique merits compared with existing methods: (1) Robustness: By utilizing membrane potential as a memory list, we pioneer the introduction of Source-Free Domain Adaptation into SNN for the first time. This enables SpGesture to mitigate the accuracy degradation caused by distribution shifts. (2) High Accuracy: With a novel Spiking Jaccard Attention, SpGesture enhances the SNNs' ability to represent sEMG features, leading to a notable rise in system accuracy. To validate SpGesture's performance, we collected a new sEMG gesture dataset which has different forearm postures, where SpGesture achieved the highest accuracy among the baselines ($89.26\%$). Moreover, the actual deployment on the CPU demonstrated a system latency below 100ms, well within real-time requirements. This impressive performance showcases SpGesture's potential to enhance the applicability of sEMG in real-world scenarios. The code is available at https://anonymous.4open.science/r/SpGesture.
- Abstract(参考訳): 表面筋電図(sEMG)に基づくジェスチャー認識は、ウェアラブルデバイスに対して自然な、直感的な相互作用のモダリティを提供する。
sEMGに基づくジェスチャー認識モデルの大幅な進歩にもかかわらず、既存の手法は高い計算遅延とエネルギー消費の増大に悩まされることが多い。
さらに、sEMG信号の固有の不安定さは、現実世界の設定における分散シフトに対する感度と相まって、モデルの堅牢性を損なう。
これらの課題に対処するために,(1)ロバスト性: 膜電位をメモリリストとして活用することにより,ソースフリードメイン適応を初めてSNNに導入する。
これによりSpGestureは、分散シフトによる精度劣化を軽減することができる。
2) 高い精度: スパイキング・ジャカード・アテンションにより, SpGesture は sEMG の特徴を表現できる SNN の能力を高め, システム精度の顕著な上昇につながった。
SpGestureのパフォーマンスを検証するために、異なる前腕姿勢を持つ新しいsEMGジェスチャデータセットを収集し、SpGestureはベースラインの中で最高の精度(89.26\%$)を達成した。
さらに、実際のCPUへのデプロイでは、システム遅延が100ms以下で、特にリアルタイムの要件内で発生していた。
この素晴らしいパフォーマンスは、現実世界のシナリオにおけるsEMGの適用性を高めるSpGestureの可能性を示している。
コードはhttps://anonymous.4open.science/r/SpGesture.comで公開されている。
関連論文リスト
- An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals [2.632402517354116]
我々は,Ninapro DB2上の300ms信号ウィンドウ上での閉形式時間特徴学習にFIN(Feature-imitating Network)を適用することを提案する。
次に、下流手の動き認識タスクに事前学習したLSTM-FINを適用して、転送学習機能について検討する。
論文 参考訳(メタデータ) (2024-05-23T21:45:15Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
本稿では,Deep Q-Networks (DQN) を用いた強化学習を分類タスクに活用するフレームワークを提案する。
本稿では,OVR(One-Versus-The-Rest)方式で,マルチクラス運動画像(MI)分類のための前処理手法を提案する。
DQNと1D-CNN-LSTMアーキテクチャの統合は意思決定プロセスをリアルタイムで最適化する。
論文 参考訳(メタデータ) (2024-02-09T02:03:13Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Unleashing the potential of GNNs via Bi-directional Knowledge Transfer [58.64807174714959]
Bi-directional Knowledge Transfer (BiKT) は、オリジナルのアーキテクチャを変更することなく、機能変換操作の可能性を解き放つためのプラグイン・アンド・プレイ方式である。
BiKTはオリジナルのGNNよりも0.5%-4%パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-26T04:11:49Z) - EMGTFNet: Fuzzy Vision Transformer to decode Upperlimb sEMG signals for
Hand Gestures Recognition [0.1611401281366893]
本稿では,手動ジェスチャー認識を行うために,EMGTFNetと呼ばれるファジィニューラルブロック(FNB)を用いた視覚変換器(ViT)アーキテクチャを提案する。
提案モデルの精度は49種類の手ジェスチャーからなるNinaProデータベースを用いて検証した。
論文 参考訳(メタデータ) (2023-09-23T18:55:26Z) - From Unimodal to Multimodal: improving sEMG-Based Pattern Recognition
via deep generative models [1.1477981286485912]
マルチモーダルハンドジェスチャ認識(HGR)システムは,HGRシステムと比較して高い認識精度を実現することができる。
本稿では,仮想慣性計測ユニット(IMU)信号を用いた表面筋電図(sEMG)に基づくHGRの精度向上のための新しい生成手法を提案する。
論文 参考訳(メタデータ) (2023-08-08T07:15:23Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
本稿では,スパイキングニューラルネットワーク(SNN)と自己認識機構という,生物学的にもっとも有効な2つの構造について考察する。
我々は、スパイキング・セルフ・アテンション(SSA)と、スパイキング・トランスフォーマー(Spikformer)という強力なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T14:16:49Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Transfer Learning for sEMG-based Hand Gesture Classification using Deep
Learning in a Master-Slave Architecture [0.0]
本研究は,複数のsEMGチャネルから記録された信号を用いて,インド手話からの信号の分類を行うディープニューラルネットワーク(DNN)からなる,新しいマスタスレーブアーキテクチャを提案する。
従来のDNNでは最大14%の改善が見られ、提案手法の適合性を主張する平均精度93.5%の合成データの追加により、マスタースレーブネットワークの最大9%の改善が見られた。
論文 参考訳(メタデータ) (2020-04-27T01:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。