論文の概要: Qubit-efficient Variational Quantum Algorithms for Image Segmentation
- arxiv url: http://arxiv.org/abs/2405.14405v1
- Date: Thu, 23 May 2024 10:21:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:44:17.566845
- Title: Qubit-efficient Variational Quantum Algorithms for Image Segmentation
- Title(参考訳): 画像分割のための量子ビット効率変動量子アルゴリズム
- Authors: Supreeth Mysore Venkatesh, Antonio Macaluso, Marlon Nuske, Matthias Klusch, Andreas Dengel,
- Abstract要約: 量子コンピューティングは、古典的なアルゴリズムの範囲を超えて、様々な計算タスクを変換することが期待されている。
本研究では,教師なし画像分割における変分量子アルゴリズム(VQA)の適用について検討する。
- 参考スコア(独自算出の注目度): 4.737806718785056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is expected to transform a range of computational tasks beyond the reach of classical algorithms. In this work, we examine the application of variational quantum algorithms (VQAs) for unsupervised image segmentation to partition images into separate semantic regions. Specifically, we formulate the task as a graph cut optimization problem and employ two established qubit-efficient VQAs, which we refer to as Parametric Gate Encoding (PGE) and Ancilla Basis Encoding (ABE), to find the optimal segmentation mask. In addition, we propose Adaptive Cost Encoding (ACE), a new approach that leverages the same circuit architecture as ABE but adopts a problem-dependent cost function. We benchmark PGE, ABE and ACE on synthetically generated images, focusing on quality and trainability. ACE shows consistently faster convergence in training the parameterized quantum circuits in comparison to PGE and ABE. Furthermore, we provide a theoretical analysis of the scalability of these approaches against the Quantum Approximate Optimization Algorithm (QAOA), showing a significant cutback in the quantum resources, especially in the number of qubits that logarithmically depends on the number of pixels. The results validate the strengths of ACE, while concurrently highlighting its inherent limitations and challenges. This paves way for further research in quantum-enhanced computer vision.
- Abstract(参考訳): 量子コンピューティングは、古典的なアルゴリズムの範囲を超えて、様々な計算タスクを変換することが期待されている。
本研究では,教師なし画像分割のための変分量子アルゴリズム (VQA) の適用について検討する。
具体的には、このタスクをグラフカット最適化問題として定式化し、パラメトリックゲート符号化(PGE)とアンシラバス符号化(ABE)と呼ばれる2つの確立された量子ビット効率のVQAを用いて最適セグメンテーションマスクを求める。
さらに,AABEと同じ回路アーキテクチャを利用するが,問題依存のコスト関数を採用する新しい手法である適応コスト符号化(ACE)を提案する。
合成画像上でPGE, ABE, ACEをベンチマークし, 品質とトレーニング性に着目した。
ACEは、パラメータ化量子回路のトレーニングにおいて、PGEやABEと比較して一貫して高速な収束を示す。
さらに、量子近似最適化アルゴリズム(QAOA)に対するこれらの手法のスケーラビリティに関する理論的解析を行い、特に画素数に対数的に依存する量子ビット数において、量子資源の大幅な削減を示す。
結果はACEの強みを検証し、その固有の限界と課題を同時に強調した。
これは量子化されたコンピュータビジョンのさらなる研究の道を開く。
関連論文リスト
- Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
本稿では,デバイス間通信コストを大幅に削減する量子回路の構築手法を提案する。
そこで本研究では,従来のQDCA手法の約3倍の大きさのトラクタブル回路を構築できることを示す。
論文 参考訳(メタデータ) (2024-05-01T20:49:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Graph Optimization Algorithm [7.788671046805509]
本研究では,メッセージパス機構を統合した新しい変分量子グラフ最適化アルゴリズムを提案する。
QUBOタスクのスケーラビリティに関して,本アルゴリズムはQAOAよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-09T16:25:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A quantum segmentation algorithm based on local adaptive threshold for
NEQR image [7.798738743268923]
アルゴリズムの複雑さは$O(n2+q)$に縮めることができるが、これは古典的なアルゴリズムに比べて指数的なスピードアップである。
この実験はIBM Qを用いて、ノイズの多い中間スケール量子(NISQ)時代のアルゴリズムの実現可能性を示す。
論文 参考訳(メタデータ) (2023-10-02T04:01:42Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。