Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property
- URL: http://arxiv.org/abs/2405.14522v1
- Date: Thu, 23 May 2024 13:03:26 GMT
- Title: Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property
- Authors: Yuya Yoshikawa, Masanari Kimura, Ryotaro Shimizu, Yuki Saito,
- Abstract summary: We propose a model-agnostic local explanation method to estimate the two-level feature attributions simultaneously.
A key idea of the proposed method is to introduce the consistency property that should exist between the HiFAs and LoFAs.
Thanks to this consistency property, the proposed method can produce HiFAs and LoFAs that are both faithful to the black-box models and consistent with each other.
- Score: 8.793424363526212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Techniques that explain the predictions of black-box machine learning models are crucial to make the models transparent, thereby increasing trust in AI systems. The input features to the models often have a nested structure that consists of high- and low-level features, and each high-level feature is decomposed into multiple low-level features. For such inputs, both high-level feature attributions (HiFAs) and low-level feature attributions (LoFAs) are important for better understanding the model's decision. In this paper, we propose a model-agnostic local explanation method that effectively exploits the nested structure of the input to estimate the two-level feature attributions simultaneously. A key idea of the proposed method is to introduce the consistency property that should exist between the HiFAs and LoFAs, thereby bridging the separate optimization problems for estimating them. Thanks to this consistency property, the proposed method can produce HiFAs and LoFAs that are both faithful to the black-box models and consistent with each other, using a smaller number of queries to the models. In experiments on image classification in multiple instance learning and text classification using language models, we demonstrate that the HiFAs and LoFAs estimated by the proposed method are accurate, faithful to the behaviors of the black-box models, and provide consistent explanations.
Related papers
- Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution [88.20464308588889]
We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
arXiv Detail & Related papers (2025-06-13T14:29:40Z) - Enforcing Consistency and Fairness in Multi-level Hierarchical Classification with a Mask-based Output Layer [25.819440955594736]
We introduce a fair, model-agnostic layer designed to enforce taxonomy and optimize objectives, including consistency, fairness, and exact match.
Our evaluations demonstrate that the proposed layer not only improves the fairness of predictions but also enforces the taxonomy, resulting in consistent predictions and superior performance.
arXiv Detail & Related papers (2025-03-19T06:30:04Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
We argue that explanations lacking insights into the decision processes of low and mid-level features are neither fully faithful nor useful.
We propose a novel paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss.
arXiv Detail & Related papers (2024-04-13T11:13:56Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
We provide model-agnostic implementations for two popular explanation methods (Occlusion and Shapley values) to enforce entirely different attributions in the complex model.
We show how our proposed approach can significantly improve the model's performance only by augmenting its training dataset based on corrected explanations.
arXiv Detail & Related papers (2023-06-28T15:23:28Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
This paper introduces CARE, a modular explanation framework that addresses the model- and user-level desiderata.
As a model-agnostic approach, CARE generates multiple, diverse explanations for any black-box model.
arXiv Detail & Related papers (2021-08-18T15:26:59Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
We propose a fully Bayesian framework for learning ground truth labels from noisy annotators.
Our framework ensures scalability by factoring a generative, Bayesian soft clustering model over label distributions into the classic David and Skene joint annotator-data model.
arXiv Detail & Related papers (2021-06-20T02:15:20Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.