AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
- URL: http://arxiv.org/abs/2405.14529v2
- Date: Thu, 12 Sep 2024 09:23:32 GMT
- Title: AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
- Authors: Simon Damm, Mike Laszkiewicz, Johannes Lederer, Asja Fischer,
- Abstract summary: We adapt DINOv2 for one-shot and few-shot anomaly detection, with a focus on industrial applications.
Our proposed vision-only approach, AnomalyDINO, is based on patch similarities and enables both image-level anomaly prediction and pixel-level anomaly segmentation.
Despite its simplicity, AnomalyDINO achieves state-of-the-art results in one- and few-shot anomaly detection (e.g., pushing the one-shot performance on MVTec-AD from an AUROC of 93.1% to 96.6%).
- Score: 16.69402464709241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in multimodal foundation models have set new standards in few-shot anomaly detection. This paper explores whether high-quality visual features alone are sufficient to rival existing state-of-the-art vision-language models. We affirm this by adapting DINOv2 for one-shot and few-shot anomaly detection, with a focus on industrial applications. We show that this approach does not only rival existing techniques but can even outmatch them in many settings. Our proposed vision-only approach, AnomalyDINO, is based on patch similarities and enables both image-level anomaly prediction and pixel-level anomaly segmentation. The approach is methodologically simple and training-free and, thus, does not require any additional data for fine-tuning or meta-learning. Despite its simplicity, AnomalyDINO achieves state-of-the-art results in one- and few-shot anomaly detection (e.g., pushing the one-shot performance on MVTec-AD from an AUROC of 93.1% to 96.6%). The reduced overhead, coupled with its outstanding few-shot performance, makes AnomalyDINO a strong candidate for fast deployment, e.g., in industrial contexts.
Related papers
- FADE: Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model [0.9226774742769024]
Few-shot/zero-shot anomaly detection is important for quality inspection in the manufacturing industry.
We propose the Few-shot/zero-shot Anomaly Engine Detection (FADE) which leverages the vision-language CLIP model and adjusts it for the purpose of anomaly detection.
FADE outperforms other state-of-the-art methods in anomaly segmentation with pixel-AUROC of 89.6% (91.5%) in zero-shot and 95.4% (97.5%) in 1-normal-shot.
arXiv Detail & Related papers (2024-08-31T23:05:56Z) - AnoPLe: Few-Shot Anomaly Detection via Bi-directional Prompt Learning with Only Normal Samples [6.260747047974035]
AnoPLe is a multi-modal prompt learning method designed for anomaly detection without prior knowledge of anomalies.
The experimental results demonstrate that AnoPLe achieves strong FAD performance, recording 94.1% and 86.2% Image AUROC on MVTec-AD and VisA respectively.
arXiv Detail & Related papers (2024-08-24T08:41:19Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - Anomaly Detection via Multi-Scale Contrasted Memory [3.0170109896527086]
We introduce a new two-stage anomaly detector which memorizes during training multi-scale normal prototypes to compute an anomaly deviation score.
Our model highly improves the state-of-the-art performance on a wide range of object, style and local anomalies with up to 35% error relative improvement on CIFAR-10.
arXiv Detail & Related papers (2022-11-16T16:58:04Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task.
Such a simple approach outperforms the meta-learning methods by roughly 220 points on current benchmarks.
arXiv Detail & Related papers (2020-03-16T00:29:14Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
We propose a One-for-all Image Anomaly Detection system based on disentangled learning using only clean samples.
Our experiments with three datasets show that OIAD can detect over $90%$ of anomalies while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-01-18T09:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.