論文の概要: Representation noising effectively prevents harmful fine-tuning on LLMs
- arxiv url: http://arxiv.org/abs/2405.14577v1
- Date: Thu, 23 May 2024 13:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:55:28.146253
- Title: Representation noising effectively prevents harmful fine-tuning on LLMs
- Title(参考訳): 表現ノーミングはLLMの有害な微調整を効果的に防止する
- Authors: Domenic Rosati, Jan Wehner, Kai Williams, Łukasz Bartoszcze, David Atanasov, Robie Gonzales, Subhabrata Majumdar, Carsten Maple, Hassan Sajjad, Frank Rudzicz,
- Abstract要約: オープンソースの大規模言語モデル(LLM)のリースは、悪質なアクターがこれらのモデルを有害な目的のために簡単に微調整できるため、デュアルユースリスクをもたらす。
本稿では,攻撃者が重みにアクセスできる場合でも有効である防御機構であるRepresentation Noising(RepNoise)を提案する。
- 参考スコア(独自算出の注目度): 28.451676139178687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning. In this work, we propose Representation Noising (RepNoise), a defence mechanism that is effective even when attackers have access to the weights and the defender no longer has any control. RepNoise works by removing information about harmful representations such that it is difficult to recover them during fine-tuning. Importantly, our defence is also able to generalize across different subsets of harm that have not been seen during the defence process. Our method does not degrade the general capability of LLMs and retains the ability to train the model on harmless tasks. We provide empirical evidence that the effectiveness of our defence lies in its "depth": the degree to which information about harmful representations is removed across all layers of the LLM.
- Abstract(参考訳): オープンソースの大規模言語モデル(LLM)のリースは、悪質なアクターがこれらのモデルを有害な目的のために簡単に微調整できるため、デュアルユースリスクをもたらす。
ウェイトをオープンにリリースしなくても、ウェイトステルスと微調整APIによって、クローズドモデルは有害な微調整攻撃(HFA)に対して脆弱になる。
脱獄防止や安全ガードレールの改善といった安全対策は重要であるが、微調整によって容易に逆転できる。
本研究では,攻撃者がウェイトにアクセスできなくなったり,ディフェンダーが制御できなくなったりしても有効である防御機構であるRepresentation Noising(RepNoise)を提案する。
RepNoiseは、有害な表現に関する情報を取り除き、微調整中にそれらを回復することは困難である。
重要なことは、我々の防衛は防衛プロセス中に見られていない様々な害のサブセットにまたがって一般化できるということです。
LLMの一般的な能力は低下せず、無害なタスクでモデルを訓練する能力を維持している。
LLMのすべての層で有害な表現に関する情報が取り除かれる程度に、我々の防衛の有効性が「深み」にあるという実証的な証拠を提供する。
関連論文リスト
- Defending against Reverse Preference Attacks is Difficult [26.872318173182414]
大きな言語モデル(LLM)は、有害なデータセットに対する教師付き微調整(SFT)のようなトレーニング時の攻撃に対して脆弱である。
本研究では,LLMが人間からのフィードバックから強化学習を行う際に,相手の報酬を用いて有害な行動を学習できるようにするために,Reverse Preference Attacks (RPA)を提案する。
論文 参考訳(メタデータ) (2024-09-19T17:10:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Emerging Safety Attack and Defense in Federated Instruction Tuning of Large Language Models [51.85781332922943]
フェデレートラーニング(FL)は、複数のパーティが直接データ共有を必要とせずに、共同で大きな言語モデル(LLM)を微調整することを可能にする。
我々は、シンプルでステルス的で効果的な安全攻撃手法を提案することにより、FedITにおける安全性アライメントの脆弱性を初めて明らかにした。
論文 参考訳(メタデータ) (2024-06-15T13:24:22Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-22T08:16:07Z) - Immunization against harmful fine-tuning attacks [21.97813820548174]
大きな言語モデル(LLM)は、有害なテキスト生成を防ぐための安全ガードで訓練されることが多い。
しかし、有害なデータセット上でLLMを微調整することで、そのような安全トレーニングを除去することができる。
我々は「免疫」条件と呼ばれる攻撃者の訓練予算に基づく正式な枠組みを導入する。
論文 参考訳(メタデータ) (2024-02-26T08:08:03Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
オープンソースの大規模言語モデルは、有害なコンテンツを生成するために容易に変換できる。
5つの異なる組織がリリースした8つのモデルに対する実験は、シャドーアライメントアタックの有効性を実証している。
この研究は、悪意のある攻撃者に対するオープンソースのLLMの安全性を見直し、強化するための集団的な取り組みの発端となる。
論文 参考訳(メタデータ) (2023-10-04T16:39:31Z) - Can Sensitive Information Be Deleted From LLMs? Objectives for Defending
Against Extraction Attacks [73.53327403684676]
本稿では,モデル重みから直接センシティブな情報を削除する作業を研究するためのアタック・アンド・ディフェンスフレームワークを提案する。
モデル重み付けへの直接的編集について検討する。この手法は、削除された情報が将来的な攻撃によって抽出されないことを保証すべきである。
我々のホワイトボックスやブラックボックス攻撃は、編集されたモデルの38%から「削除された」情報を復元できるので、ROMEのような最先端のモデル編集方法でさえ、GPT-Jのようなモデルから事実情報を真に消し去るのに苦労している。
論文 参考訳(メタデータ) (2023-09-29T17:12:43Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。