論文の概要: Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields
- arxiv url: http://arxiv.org/abs/2405.14599v1
- Date: Thu, 23 May 2024 14:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:45:33.892251
- Title: Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields
- Title(参考訳): 光流場の塗布における神経明示的拡散モデル
- Authors: Tom Fischer, Pascal Peter, Joachim Weickert, Eddy Ilg,
- Abstract要約: 我々は、PDEに基づく明示的なアプローチと畳み込みニューラルネットワークを組み合わせることで、モデルとデータ駆動アプローチを結合する方法を示す。
我々のモデルは、再構築の質、堅牢性、必要なトレーニングデータの量の観点から、完全に明示的かつ完全にデータ駆動のベースラインを上回ります。
- 参考スコア(独自算出の注目度): 8.282495481952784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has revolutionized the field of computer vision by introducing large scale neural networks with millions of parameters. Training these networks requires massive datasets and leads to intransparent models that can fail to generalize. At the other extreme, models designed from partial differential equations (PDEs) embed specialized domain knowledge into mathematical equations and usually rely on few manually chosen hyperparameters. This makes them transparent by construction and if designed and calibrated carefully, they can generalize well to unseen scenarios. In this paper, we show how to bring model- and data-driven approaches together by combining the explicit PDE-based approaches with convolutional neural networks to obtain the best of both worlds. We illustrate a joint architecture for the task of inpainting optical flow fields and show that the combination of model- and data-driven modeling leads to an effective architecture. Our model outperforms both fully explicit and fully data-driven baselines in terms of reconstruction quality, robustness and amount of required training data. Averaging the endpoint error across different mask densities, our method outperforms the explicit baselines by 11-27%, the GAN baseline by 47% and the Probabilisitic Diffusion baseline by 42%. With that, our method sets a new state of the art for inpainting of optical flow fields from random masks.
- Abstract(参考訳): ディープラーニングは、数百万のパラメータを持つ大規模ニューラルネットワークを導入することによって、コンピュータビジョンの分野に革命をもたらした。
これらのネットワークのトレーニングには大量のデータセットが必要で、一般化に失敗する不透明なモデルにつながる。
一方、偏微分方程式(PDE)から設計されたモデルは、専門的なドメイン知識を数学的方程式に組み込んでおり、通常は手動で選択されたハイパーパラメータに頼っている。
これにより、それらは建設によって透過的になり、設計と校正が慎重に行われると、目に見えないシナリオにうまく一般化できる。
本稿では、PDEに基づく明示的なアプローチと畳み込みニューラルネットワークを組み合わせることで、モデルとデータ駆動のアプローチを組み合わせる方法を示す。
本稿では,光学的流れ場に着色する作業のための共同アーキテクチャについて解説し,モデルとデータ駆動モデリングの組み合わせが効果的なアーキテクチャをもたらすことを示す。
我々のモデルは、再構築の質、堅牢性、必要なトレーニングデータの量の観点から、完全に明示的かつ完全にデータ駆動のベースラインを上回ります。
異なるマスク密度で終端誤差を平均すると、明示的ベースラインを11~27%、GANベースラインを47%、Probabilisite Diffusionベースラインを42%上回る。
そこで本手法では,ランダムマスクから光の流れ場を塗布する手法を提案する。
関連論文リスト
- SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
本研究では3次元地震データに適した新しい拡散モデル再構成フレームワークを提案する。
拡散モデルに3次元ニューラルネットワークアーキテクチャを導入し、2次元拡散モデルを3次元空間に拡張することに成功した。
本手法は、フィールドデータセットと合成データセットの両方に適用した場合、より優れた再構成精度を示す。
論文 参考訳(メタデータ) (2024-03-18T05:10:13Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
本稿では,多目的ニューラルアーキテクチャサーチ (NAS) とハイパーパラメータ最適化 (HPO) を,表データの非常に困難な領域への最初の応用として提案する。
我々はNASで精度のみに最適化されたモデルが、本質的に公正な懸念に対処できないことをしばしば示している。
公平性、正確性、あるいは両方において、最先端のバイアス緩和手法を一貫して支配するアーキテクチャを作成します。
論文 参考訳(メタデータ) (2023-10-18T17:56:24Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Bridging Mean-Field Games and Normalizing Flows with Trajectory
Regularization [11.517089115158225]
平均場ゲーム(MFG)は、多数の相互作用エージェントを持つシステムのモデリングフレームワークである。
正規化フロー(NFs)は、可逆写像を用いてデータ可能性を計算する深層生成モデルのファミリーである。
本研究では,NF の学習を MFG の解法としてコンテキスト化することにより,MFG と NF の関係を明らかにする。
論文 参考訳(メタデータ) (2022-06-30T02:44:39Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Fully differentiable model discovery [0.0]
ニューラルネットワークに基づくサロゲートとスパースベイズ学習を組み合わせたアプローチを提案する。
我々の研究は、PINNを様々なタイプのニューラルネットワークアーキテクチャに拡張し、ニューラルネットワークベースのサロゲートをベイズパラメータ推論のリッチフィールドに接続する。
論文 参考訳(メタデータ) (2021-06-09T08:11:23Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。