論文の概要: ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification
- arxiv url: http://arxiv.org/abs/2405.14608v1
- Date: Thu, 23 May 2024 14:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:35:49.734571
- Title: ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification
- Title(参考訳): ShapeFormer:多変量時系列分類のためのシェープレット変換器
- Authors: Xuan-May Le, Ling Luo, Uwe Aickelin, Minh-Tuan Tran,
- Abstract要約: 本稿では,クラス固有および汎用トランスモジュールからなる新しいシェープレットトランス (ShapeFormer) を提案する。
30のUEA MTSCデータセットに対する実験により、ShapeFormerは最先端の手法に比べて高い精度でランク付けされていることが示された。
- 参考スコア(独自算出の注目度): 4.070146894116397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series classification (MTSC) has attracted significant research attention due to its diverse real-world applications. Recently, exploiting transformers for MTSC has achieved state-of-the-art performance. However, existing methods focus on generic features, providing a comprehensive understanding of data, but they ignore class-specific features crucial for learning the representative characteristics of each class. This leads to poor performance in the case of imbalanced datasets or datasets with similar overall patterns but differing in minor class-specific details. In this paper, we propose a novel Shapelet Transformer (ShapeFormer), which comprises class-specific and generic transformer modules to capture both of these features. In the class-specific module, we introduce the discovery method to extract the discriminative subsequences of each class (i.e. shapelets) from the training set. We then propose a Shapelet Filter to learn the difference features between these shapelets and the input time series. We found that the difference feature for each shapelet contains important class-specific features, as it shows a significant distinction between its class and others. In the generic module, convolution filters are used to extract generic features that contain information to distinguish among all classes. For each module, we employ the transformer encoder to capture the correlation between their features. As a result, the combination of two transformer modules allows our model to exploit the power of both types of features, thereby enhancing the classification performance. Our experiments on 30 UEA MTSC datasets demonstrate that ShapeFormer has achieved the highest accuracy ranking compared to state-of-the-art methods. The code is available at https://github.com/xuanmay2701/shapeformer.
- Abstract(参考訳): 多変量時系列分類(MTSC)は,多種多様な実世界の応用により注目されている。
近年,MTSCの変圧器の利用は最先端の性能を実現している。
しかし,既存の手法は汎用的な特徴に焦点をあて,データの包括的理解を提供するが,各クラスの代表的特徴を学習するのに不可欠なクラス固有の特徴は無視する。
これにより、不均衡なデータセットや、類似した全体的なパターンを持つデータセットでは、パフォーマンスが低下するが、クラス固有の詳細では異なっている。
本稿では,これら両方の特徴を捉えるために,クラス固有およびジェネリックトランスを用いた新しいシェープレットトランス (ShapeFormer) を提案する。
クラス固有のモジュールでは,各クラス(例えばシェープレット)の識別サブシーケンスをトレーニングセットから抽出する発見手法を導入する。
次に,これらの形状と入力時間列の差分を学習する形状レットフィルタを提案する。
その結果,各形状の相違点には重要なクラス固有の特徴が含まれており,クラスと他との相違点が顕著であることがわかった。
ジェネリックモジュールでは、畳み込みフィルタを使用して、すべてのクラスを区別する情報を含む一般的な特徴を抽出する。
各モジュールに対して変換器エンコーダを用い,それらの特徴間の相関を捉える。
その結果、2つのトランスモジュールの組み合わせにより、モデルが両方のタイプの特徴のパワーを活用できるようになり、分類性能が向上する。
30のUEA MTSCデータセットに対する実験により、ShapeFormerは最先端の手法に比べて高い精度でランク付けされていることが示された。
コードはhttps://github.com/xuanmay2701/shapeformer.comで入手できる。
関連論文リスト
- Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - FRANS: Automatic Feature Extraction for Time Series Forecasting [2.3226893628361682]
ドメイン知識を必要としない静的な機能のための自律的機能検索ネットワークを開発した。
以上の結果から,ほとんどの状況において,我々の特徴が精度の向上につながることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-15T03:14:59Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
本稿では,従来の知識として,新しいクラスとベースクラスのカテゴリ相関を探索し,シンプルで効果的な特徴補正手法を提案する。
提案手法は, 広く使用されている3つのベンチマークにおいて, 一定の性能向上が得られる。
論文 参考訳(メタデータ) (2021-12-14T08:25:24Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Compositional Fine-Grained Low-Shot Learning [58.53111180904687]
そこで本研究では,ゼロおよび少数ショット学習のための新しい合成生成モデルを構築し,学習サンプルの少ない,あるいは全くない,きめ細かいクラスを認識する。
本稿では, 学習サンプルから属性特徴を抽出し, それらを組み合わせて, 稀で見えないクラスのためのきめ細かい特徴を構築できる特徴合成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-21T16:18:24Z) - Point Cloud Learning with Transformer [2.3204178451683264]
我々は,マルチレベルマルチスケールポイントトランスフォーマ(mlmspt)と呼ばれる新しいフレームワークを提案する。
具体的には、点ピラミッド変換器を用いて、多様な分解能やスケールを持つ特徴をモデル化する。
マルチレベルトランスモジュールは、各スケールの異なるレベルからコンテキスト情報を集約し、それらの相互作用を強化するように設計されている。
論文 参考訳(メタデータ) (2021-04-28T08:39:21Z) - Fine-grained Classification via Categorical Memory Networks [42.413523046712896]
きめ細かい機能学習のためのクラス固有のメモリモジュールを提示する。
メモリモジュールは、各カテゴリの原型的特徴表現を移動平均として格納する。
クラス固有のメモリモジュールを標準畳み込みニューラルネットワークに統合し、カテゴリメモリネットワークを生成します。
論文 参考訳(メタデータ) (2020-12-12T11:50:13Z) - Feature Space Augmentation for Long-Tailed Data [74.65615132238291]
実世界のデータは、各クラスの周波数が典型的に異なるため、長い尾の分布に従うことが多い。
データ再サンプリングと拡張に関するクラスバランス損失と高度な手法は、データの不均衡問題を解決するためのベストプラクティスのひとつです。
提案手法は,多種多様なサンプルを持つクラスから学習した特徴量を用いて,特徴空間における表現不足のクラスを増大させることによって,長鎖問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-09T06:38:00Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。