論文の概要: FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
- arxiv url: http://arxiv.org/abs/2405.14767v1
- Date: Thu, 23 May 2024 16:35:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:46:53.717483
- Title: FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
- Title(参考訳): FinRobot: 大規模言語モデルを用いた金融アプリケーションのためのオープンソースのAIエージェントプラットフォーム
- Authors: Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, Christina Dan Wang,
- Abstract要約: FinRobotは、複数の金融専門のAIエージェントをサポートする、オープンソースのAIエージェントプラットフォームである。
FinRobotは、高度な財務分析に強力なAI技術を利用するために、プロ級のアナリストとレイパーの両方にハンズオンを提供する。
- 参考スコア(独自算出の注目度): 16.814416170855147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at \url{https://github.com/AI4Finance-Foundation/FinRobot}.
- Abstract(参考訳): 金融機関や専門家が自分たちのワークフローにLarge Language Models(LLM)を組み入れていくにつれて、プロプライエタリなデータや専門知識を含む大きな障壁が金融セクターとAIコミュニティの間で持続する。
これらの課題は、AIコミュニティの経済的タスクを効果的に強化する能力を妨げる。
金融分析の重要な役割を認識し、金融特化LDMベースのツールチェーンを考案し、オープンソースイニシアチブを通じてそれらへのアクセスを民主化し、金融意思決定におけるAI採用の拡大を促進することを目的としています。
本稿では,複数の金融特化AIエージェントをサポートする,オープンソースのAIエージェントプラットフォームであるFinRobotを紹介する。
具体的には、このプラットフォームは4つの主要なレイヤから構成されている。
1) 金融AIエージェント層は、洗練された金融問題を論理的な順序に分解することで、金融危機(CoT)を定式化する。
2)金融LLMアルゴリズム層は,特定のタスクに対して適切なモデル適用戦略を動的に設定する。
3) LLMOpsとDataOpsレイヤは、トレーニング/ファインチューニング技術を適用し、タスク関連データを使用することで、正確なモデルを生成する。
4) 様々なLCMを統合し、上記のレイヤに直接アクセスできるようにするマルチソース LLM Foundation Models レイヤ。
最後にFinRobotは、高度な財務分析に強力なAI技術を利用するために、プロ級のアナリストとレイパーの両方にハンズオンを提供する。
FinRobot は \url{https://github.com/AI4Finance-Foundation/FinRobot} でオープンソース化しました。
関連論文リスト
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
大規模言語モデル(LLM)は高度な金融アプリケーションを持っているが、十分な財務知識がなく、テーブルや時系列データといったマルチモーダル入力に関わるタスクに苦労することが多い。
我々は、総合的な財務知識をテキスト、テーブル、時系列データに組み込む一連の金融LLMであるtextitOpen-FinLLMsを紹介する。
また、複雑な財務データ型を扱うために、1.43Mの画像テキスト命令で訓練されたマルチモーダルLLMであるFinLLaVAについても紹介する。
論文 参考訳(メタデータ) (2024-08-20T16:15:28Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - FinGPT: Open-Source Financial Large Language Models [20.49272722890324]
我々は金融セクター向けのオープンソースの大規模言語モデルFinGPTを提案する。
プロプライエタリなモデルとは異なり、FinGPTはデータ中心のアプローチを採用し、研究者や実践者にアクセスしやすく透明なリソースを提供する。
ロボアドバイス,アルゴリズムトレーディング,ローコード開発など,ユーザにとってのステップストーンとして,潜在的な応用例をいくつか紹介する。
論文 参考訳(メタデータ) (2023-06-09T16:52:00Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。