論文の概要: PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression
- arxiv url: http://arxiv.org/abs/2405.14852v2
- Date: Thu, 30 May 2024 15:01:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:05:24.814767
- Title: PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression
- Title(参考訳): PV調整:極端LLM圧縮のためのストレートスルー推定を超えて
- Authors: Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi, Dan Alistarh, Peter Richtarik,
- Abstract要約: 最先端の量子化手法には、限られたキャリブレーションデータに対する圧縮パラメータの微調整(一部)が含まれる。
既存の微調整戦略を一般化し改善する表現に依存しないフレームワークであるPV-Tuningを提案する。
- 参考スコア(独自算出の注目度): 31.30170080420504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.
- Abstract(参考訳): 大規模言語モデル(LLM)の「極端」圧縮、すなわちパラメータ毎に1-2ビットまで、リソース制約のあるデバイス上で効率的に実行されることへの大きな関心がある。
既存の研究は、改良されたワンショット量子化技術と重み表現に焦点を当てているが、純粋なポストトレーニングアプローチは、精度-vs-bit-widthトレードオフの観点からは、リターンが低下している。
QuIP#やAQLMのような最先端の量子化手法は、圧縮されたパラメータを限られた量のキャリブレーションデータで微調整することを含むが、圧縮された重みに対する微調整技術は、この設定では性能がよく理解されていないストレートスルー推定器(STE)を排他的に利用することが多い。
本研究では, 極端LLM圧縮におけるSTEの使用を疑問視し, 準最適であることを示すとともに, LLMの量子化対応微調整戦略の体系的研究を行う。
本稿では,既存の微調整戦略を一般化し,改良する表現に依存しないフレームワークであるPV-Tuningを提案する。
実用面では、1-2ビットベクトル量子化に使用する場合、PV-TuningはLlamaやMistralのような高性能モデルの先行技術に優れる。
PV-Tuningを用いて,パラメータあたり2ビットのLlama 2ファミリーモデルに対して,最初のパレート最適量子化を実現する。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
Two-towerアーキテクチャは、事前学習したLLMパラメータをコンパクトな表現に圧縮し、付加的な完全精度アダプタを微調整するために用いられる。
Sketched Adapting of LLMs (Sketched Adapting of LLMs) を提案する。
SpaLLMは事前訓練したLLM重量をルックアップテーブルにスケッチし、これらのテーブルの値を直接微調整する。
論文 参考訳(メタデータ) (2024-10-08T20:58:24Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
ポストトレーニング量子化(PTQ)は、その圧縮効率とトレーニングの文脈における費用対効果により、かなりの関心を集めている。
既存の大規模言語モデル(LLM)のPTQ手法は、事前量子化重みと後量子化重みの間の変換のスケーリングに最適化範囲を制限している。
本稿では,PTQ(AffineQuant)における等価アフィン変換を用いた直接最適化を提唱する。
論文 参考訳(メタデータ) (2024-03-19T08:40:21Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
そこで本研究では,現在のPTQ手法のプラグインとして利用できるノルム調整手法を提案する。
本手法は,重量のみの量子化と重みとアクティベーションの連成量子化の両面で有意な改善を示す。
私たちのシンプルで効果的なアプローチは、現実世界のアプリケーションにとってより実用的です。
論文 参考訳(メタデータ) (2023-09-06T06:51:15Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
我々は,事前学習された言語モデルの学習後の量子化と,対象タスクの量子化パラメータの一部のみを微調整するAlphaTuningを提案する。
具体的には、AlphaTuningはバイナリ符号化量子化を使用して、完全精度パラメータをバイナリパラメータとスケーリングファクタの別個のセットに分解する。
GPT-2 や OPT に適用されたAlphaTuning は,4ビット量子化条件下での圧縮率 >10x を実現し,トレーニング可能なパラメータ数 >1,000x の削減を図りながら,様々な下流タスクの完全な微調整と競合することを示した。
論文 参考訳(メタデータ) (2022-10-08T00:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。