EvGGS: A Collaborative Learning Framework for Event-based Generalizable Gaussian Splatting
- URL: http://arxiv.org/abs/2405.14959v3
- Date: Thu, 10 Oct 2024 07:41:26 GMT
- Title: EvGGS: A Collaborative Learning Framework for Event-based Generalizable Gaussian Splatting
- Authors: Jiaxu Wang, Junhao He, Ziyi Zhang, Mingyuan Sun, Jingkai Sun, Renjing Xu,
- Abstract summary: We propose the first event-based generalizable 3D reconstruction framework, called EvGGS.
It reconstructs scenes as 3D Gaussians from only event input in a feedforward manner.
Our approach performs better than all baselines in reconstruction quality, and depth/intensity predictions with satisfactory speed.
- Score: 5.160735014509357
- License:
- Abstract: Event cameras offer promising advantages such as high dynamic range and low latency, making them well-suited for challenging lighting conditions and fast-moving scenarios. However, reconstructing 3D scenes from raw event streams is difficult because event data is sparse and does not carry absolute color information. To release its potential in 3D reconstruction, we propose the first event-based generalizable 3D reconstruction framework, called EvGGS, which reconstructs scenes as 3D Gaussians from only event input in a feedforward manner and can generalize to unseen cases without any retraining. This framework includes a depth estimation module, an intensity reconstruction module, and a Gaussian regression module. These submodules connect in a cascading manner, and we collaboratively train them with a designed joint loss to make them mutually promote. To facilitate related studies, we build a novel event-based 3D dataset with various material objects and calibrated labels of grayscale images, depth maps, camera poses, and silhouettes. Experiments show models that have jointly trained significantly outperform those trained individually. Our approach performs better than all baselines in reconstruction quality, and depth/intensity predictions with satisfactory rendering speed.
Related papers
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - Elite-EvGS: Learning Event-based 3D Gaussian Splatting by Distilling Event-to-Video Priors [8.93657924734248]
Event cameras are bio-inspired sensors that output asynchronous and sparse event streams, instead of fixed frames.
We propose a novel event-based 3DGS framework, named Elite-EvGS.
Our key idea is to distill the prior knowledge from the off-the-shelf event-to-video (E2V) models to effectively reconstruct 3D scenes from events.
arXiv Detail & Related papers (2024-09-20T10:47:52Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
sparse-view reconstruction is inherently ill-posed and under-constrained.
We introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images.
Our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods.
arXiv Detail & Related papers (2024-09-05T12:09:02Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z) - Learning monocular 3D reconstruction of articulated categories from
motion [39.811816510186475]
Video self-supervision forces the consistency of consecutive 3D reconstructions by a motion-based cycle loss.
We introduce an interpretable model of 3D template deformations that controls a 3D surface through the displacement of a small number of local, learnable handles.
We obtain state-of-the-art reconstructions with diverse shapes, viewpoints and textures for multiple articulated object categories.
arXiv Detail & Related papers (2021-03-30T13:50:27Z) - E3D: Event-Based 3D Shape Reconstruction [19.823758341937605]
3D shape reconstruction is a primary component of augmented/virtual reality.
Previous solutions based on RGB, RGB-D and Lidar sensors are power and data intensive.
We approach 3D reconstruction with an event camera, a sensor with significantly lower power, latency and data expense.
arXiv Detail & Related papers (2020-12-09T18:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.